Skip to main content

Effective Atom-Atom Potentials for H2O–He and H2O–Ar Systems


An atom-atom interaction potential for the H2O–A system is proposed in a form that depends on the normal coordinates q of an H2O molecule. Vibrational and rotational corrections to the effective potential for H2O–He and H2O–Ar systems are calculated and their impact on the calculated broadening coefficients γ is analysed for the absorption lines of different vibrational H2O bands in the case of broadening by helium and argon. It is shown that excitation of the stretching modes of vibrations in the H2O molecule leads to an increase in the calculated broadening coefficients γ. Accounting for rotational corrections, γ increases by 15% for the lines with rotational quantum number K a = 9 for the lower transition state in the case of broadening by He and by 4% when broadening by Ar.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. I. Starikov, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Effective potentials for H2O–He and H2O–Ar systems. Isotropic induction—dispersion potentials,” Eur. Phys. J., D 71 (5) (2017). doi 10.1140/epjd/e2017-70685-9

    Google Scholar 

  2. 2.

    J. O. Hirshfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (Wiley-Interscience, 1964).

    Google Scholar 

  3. 3.

    B. Labani, J. Bonamy, D. Robert, J.-M. Hartmann, and J. Taine, “Collisional broadening of rotationvibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84 (21), 4256–4267 (1986).

    ADS  Article  Google Scholar 

  4. 4.

    S. P. Neshyba and R. R. Gamache, I”mproved linebroadening coefficients for asymmetric rotor molecules with application to ozone line broadened by nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 50 (5), 443–453 (1993).

    ADS  Article  Google Scholar 

  5. 5.

    V. I. Starikov, “Vibration-rotation interaction potential for H2O–A system,” J. Quant. Spectrosc. Radiat. Transfer 155, 49–56 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    A. R. Hoy, I. M. Mills, and G. Strey, “Anharmonic force constant calculations,” Mol. Phys. 24 (6), 1265–1290 (1972).

    ADS  Article  Google Scholar 

  7. 7.

    M. R. Aliev and J. K. J. Watson, “Higher-order effects in the vibration-rotation spectra of semirigid molecules,” in Molecular Spectroscopy, Modern Research, Ed. by K.N. Rao (Academic press, London, 1985), vol. 3, p. 1–67

    Google Scholar 

  8. 8.

    C. Camy-Peyret and J. M. Flaud, “Vibration-rotation dipole moment operator for asymmetric rotors,” in Molecular Spectroscopy, Modern Research, Ed. by K.N. Rao (Academic press, London, 1985), vol. 3, p. 69–110.

    Google Scholar 

  9. 9.

    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Methods in the Spectroscopy of Water Vapor Molecules (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  10. 10.

    T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Vibrational dependence of an intermolecular potential for H2O–He system,” J. Quant. Spectrosc. Radiat. Transfer 129, 241–253 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Measurements and calculations of Arbroadening and shifting parameters of water vapor transitions of ν1 + ν2 + ν3 band,” J. Quant. Spectrosc. Radiat. Transfer 148, 116–126 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).

    Article  Google Scholar 

  13. 13.

    A. D. Bykov, N. N. Lavrent’eva, and L. N. Sinitsa, “Resonance functions of the theory of broadening and shift of lines for actual trajectories,” Atmos. Ocean. Opt. 5 (11), 728–739 (1992).

    Google Scholar 

  14. 14.

    D. W. Steyert, W. F. Wang, J. M. Sirota, N. M. Donahue, and D. C. Reuter, “Hydrogen and helium pressure broadening of water transitions in the 380–600 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 83 (2), 183–191 (2004).

    ADS  Article  Google Scholar 

  15. 15.

    P. Poddar, S. Mitra, M. M. Hossain, D. Biswas, P. N. Ghosh, and B. Ray, “Diode laser spectroscopy of He, N2 and air broadened water vapour transitions belonging to the 2ν1 + ν2 + ν3 band,” Mol. Phys. 108 (15), 1957–1964 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    A. Lucchesini, S. Gozzini, and C. Gabbanini, “Water vapor overtones pressure line broadening and shifting measurements,” Eur. Phys. J., D 8 (2), 223–226 (2000).

    ADS  Article  Google Scholar 

  17. 17.

    B. E. Grossmann and E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138 (2), 562–595 (1989).

    ADS  Article  Google Scholar 

  18. 18.

    C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 68 (3), 273–298 (2001).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Starikov.

Additional information

Original Russian Text © V.I. Starikov, T.M. Petrova, A.M. Solodov, A.A. Solodov, V.M. Deichuli, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I., Petrova, T.M., Solodov, A.M. et al. Effective Atom-Atom Potentials for H2O–He and H2O–Ar Systems. Atmos Ocean Opt 31, 137–145 (2018).

Download citation


  • atom-atom potential
  • H2O–He
  • H2O–Ar
  • collisional broadening