Atmospheric and Oceanic Optics

, Volume 31, Issue 2, pp 171–180 | Cite as

Siberian Smoke Haze over European Territory of Russia in July 2016: Atmospheric Pollution and Radiative Effects

  • E. G. SemoutnikovaEmail author
  • G. I. Gorchakov
  • S. A. Sitnov
  • V. M. Kopeikin
  • A. V. Karpov
  • I. A. Gorchakova
  • T. Ya. Ponomareva
  • A. A. Isakov
  • R. A. Gushchin
  • O. I. Datsenko
  • G. A. Kurbatov
  • G. A. Kuznetsov
Optics of Clusters, Aerosols, and Hydrosoles


We have characterized the large-scale smoke pollution of the European territory of Russia (ETR) and adjoining areas in July 2017, caused by long-range transport from forest-fire areas in Siberia, confirmed by calculations of ten-day back trajectories of air mass motion to the ETR urban area, spanning Archangelsk to Rostov-on-Don. The smoke-laden ETR area with an AOD > 0.3 (average value being 0.43 and maximal value being 2.5) on July 25, 2016, covered 5 million km2, and the total smoke mass was ~1.2 million tons. It is shown that the daily average mass concentration of aerosol with particle sizes less than 2.5 μm exceeded the corresponding maximum permissible concentration in the Moscow region during the period from July 24 to 27, 2016. The influence of local sources on aerosol and gas pollution of atmospheric air was estimated. The smoke haze in 2016 was found to be deficient in carbon monoxide as compared to smoke pollution in 2010. It is shown that the thermal and wind stratification in the atmospheric boundary layer markedly influenced the pollution level in the smoke-laden urban atmosphere. Smoke aerosol radiative effect was estimated. The average aerosol radiative forcings at the top and bottom of the atmosphere over ETR on July 25, 2016, were–29 and–53 W/m2, and extreme forcings reached–112 and–215 W/m2, respectively.


large-scale smoke haze long-range transport smoke aerosol aerosol mass concentration carbon monoxide deficit aerosol radiative forcing MODIS AERONET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Sitnov, I. I. Mokhov, and G. I. Gorchakov, “The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of largescale atmospheric circulation,” Dokl. Earth Sci. 472 (2), 190–195 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Bondur and A. S. Ginzburg, “Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring,” Dokl. Earth Sci. 466 (2), 148–152 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, E. G. Semutnikova, V. S. Rakitin, E. V. Fokeeva, A. V. Karpov, G. A. Kurbatov, E. S. Baikova, and T. P. Safrygina, “Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010,” Dokl. Earth Sci. 441 (2), 1666–1672 (2011).CrossRefGoogle Scholar
  4. 4.
    I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).CrossRefGoogle Scholar
  5. 5.
    N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).CrossRefGoogle Scholar
  6. 6.
    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016).CrossRefGoogle Scholar
  7. 7.
    T. K. Sklyadneva, G. A. Ivlev, B. D. Belan, M. Yu. Arshinov, and D. V. Simonenkov, “The radiation regime of Tomsk in conditions of a smoky haze,” Opt. Atmos. Okeana 28 (3), 215–222 (2015).Google Scholar
  8. 8.
    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer-fall season of 2002,” Izv., Atmos. Ocean. Phys. 40 (3), 323–336 (2004).Google Scholar
  9. 9.
    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).Google Scholar
  10. 10.
    A. Van Donkelaar, R. V. Martin, R. C. Levy, M. A. Silva, M. Krzyzanowski, N. E. Chubarova, E. G. Semutnikova, and A. J. Cohen, “Satellite-based estimates of ground-level fine particle matter during extreme events: A case study of the Moscow fires in 2010,” Atmos. Environ. 45, 6225–6232 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    N. Chubarova, Y. Nezval’, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010,” Atmos. Meas. Tech. 5, 557–568 (2012).CrossRefGoogle Scholar
  12. 12.
    S. A. Sitnov, “Satellite monitoring of atmospheric gaseous species and optical characteristics of atmospheric aerosol over the European part of Russia in April-September 2010,” Dokl. Earth Sci. 437 (1), 368–373 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  14. 14.
    E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, “Investigation of the 2010 July-August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).CrossRefGoogle Scholar
  15. 15.
    S. A. Sitnov, “Analysis of satellite observations of aerosol optical properties and gaseous species over Central District of Russian Federation in the period of abnormally high summer temperature and mass wild fires in 2010,” Opt. Atmos. Okeana 24 (7), 572–581 (2011).Google Scholar
  16. 16.
    I. N. Kuznetsova, A. M. Zvyagintsev, and E. G. Semutnikova, Ecological Sequences of the Weather Anomalies of summer 2010. The analysis of anomalous weather conditions on the territory of Russia in summer 2010 (Triada, Moscow, 2010), p. 58–64 [in Russian].Google Scholar
  17. 17.
    N. E. Chubarova, E. V. Gorbarenko, E. I. Nezval’, and O. A. Shilovtseva, “Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow,” Izv., Atmos. Ocean. Phys. 47 (6), 729–738 (2011).CrossRefGoogle Scholar
  18. 18.
    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Study of the composition of the atmospheric smoke screen over the Moscow region,” Dokl. Earth Sci. 390 (4), 562–565 (2003).Google Scholar
  19. 19.
    G. I. Gorchakov, M. A. Sviridenkov, E. G. Semutnikova, N. E. Chubarova, B. N. Kholben, A. V. Smirnov, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, E. A. Lezina, and O. S. Zadorozhnaya, “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth Sci. 437 (2), 513–517 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    I. I. Mokhov and I. A. Gorchakova, “Radiation and temperature effects of summer fires in 2002 in the Moscow region,” Dokl. Earth Sci. 400 (1), 160–163 (2005).Google Scholar
  21. 21.
    V. G. Bondur, “Satellite monitoring of emissions of trace gases and aerosols during wild fires in Russia,” Issled. Zemli Kosmosa, No. 6, 21–25 (2015).Google Scholar
  22. 22.
    S.A. Sitnov, “Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: Interrelation between the variation in pollutants and meteorological parameters,” Atmos. Ocean. Phys. 47 (6), 714–728 (2011).CrossRefGoogle Scholar
  23. 23.
    S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, V. M. Kopeikin, T. Ya. Ponomareva, and A. V. Karpov, “Effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol over the European Russia in summer 2010,” Issled. Zemli Kosmosa, No. 2, 28–41 (2013).Google Scholar
  24. 24.
    N. P. Shakina, A. R. Ivanova, B. A. Birman, and E. N. Skriptunova, Blocking: Conditions of summer 2010 in the context of modern knowledge. The analysis of anomalous weather conditions on the territory of Russia in summer 2010 (Triada, Moscow, 2010), p. 6–21 [in Russian].Google Scholar
  25. 25.
    A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the Territory of Russia and supply of black carbon to the Arctic,” Atmos. Ocean. Opt. 29 (6), 545–550 (2016).CrossRefGoogle Scholar
  26. 26.
    G. Gorchakov, E. Semoutnikova, A. Karpov, and E. Lezina, Air Pollution in Megacity, Advanced topics in environmental health and air pollution case studies (Rijeka, Intech, Moscow, 2011).Google Scholar
  27. 27.
    V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS, advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    Y. J. Kaufman, D. Tanre, H. R. Gordon, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res., D 102 (14), 17051–17067 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” J. Geophys. Res. 112, D13211 (2007).ADSGoogle Scholar
  30. 30.
    J. C. Acker and G. Leptoukh, “Online analysis enhances use of NASA Earth Science Data, EOS,” Trans. Am. Geophys. Union 88, 14–17 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, N. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    O. Dubovik and M. D. King, “A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., D 105 (16), 20673–20696 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    E. N. Kadygrov and I. N. Kuznetsova, Methodical Advice on the Use of MW Profiler Remote Measurement Data on Temperature Profiles in the Boundary Air Layer: Theory and Practice (RF Ministry of Natural Resources and Ecology, Dolgoprudny, 2015) [in Russian].Google Scholar
  34. 34.
    S. L. Belousov and T. S. Pagava, Calculation of Air Particle Trajectories, Branch Collection of Algorithms and Software “Hydrometeoservice”, No. 257244 8.00150-01 13 (1998).Google Scholar
  35. 35.
    G. I. Gorchakov, A. S. Emilenko, M. A. Sviridenkov, “Single-parametric model of surface aerosol,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17 (1), 39–49 (1981).Google Scholar
  36. 36.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Diurnal variations of the submicron aerosol and black carbon in the near-ground layer,” Atmos. Ocean. Opt. 24 (1), 30–38 (2011).CrossRefGoogle Scholar
  37. 37.
    G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, V.M. Kopeikin, A. V. Karpov, G. A. Kurbatov, T. Ya. Ponomareva, and A. V. Sokolov, “Moscow smoky haze of 2010. Extreme aerosol and gaseous air pollution in Moscow region,” Opt. Atmos. Okeana 24 (6), 452–458 (2011).Google Scholar
  38. 38.
    G. I. Gorchakov, V. M. Kopeikin, S. A. Sitnov, E. G. Semoutnikova, M. A. Sviridenkov, A. V. Karpov, E. A. Lezina, A. S. Emilenko, A. A. Isakov, G. A. Kuznetsov, and T. Ya. Ponomareva, “Moscow smoke haze in october 2014. Variations in the aerosol mass concentration,” Atmos. Ocean. Opt. 29 (1), 5–11 (2016).CrossRefGoogle Scholar
  39. 39. access 17.08.2017).Google Scholar
  40. 40.
    O. B. Popovicheva, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, E. D. Kireeva, N. M. Persiantseva, M. A. Timofeev, G. Engling, K. Elephteriadis, L. Diapouli, M. V. Panchenko, R. Zimmermann, and J. Schnelle-Kreis, “Optical-microphysical and physical-chemical characteristics of smokes from Siberian biomass burning: Experiments in aerosol chamber,” Atmos. Ocean. Opt. 29 (6), 492–500 (2016).CrossRefGoogle Scholar
  41. 41.
    G. I. Gorchakov, A. V. Vasil’ev, K. S. Verichev, E. G. Semutnikova, and A. V. Karpov, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    G. I. Gorchakov, A. V. Karpov, N. V. Pankratova, E. G. Semutnikova, A. V. Vasil’ev, and I. A. Gorchakova, “Brown Carbon and Black Carbon in Smoke-Filled Atmosphere during Boreal Forest Fires,” Issled. Zemli Kosmosa, No. 3, 11–21 (2017).Google Scholar
  43. 43.
    G. I. Gorchakov, E. G. Semutnikova, B. A. Anoshin, A. V. Karpov, and A. B. Kolesnikova, “Hydrocarbons in an urban atmosphere,” Izv., Atmos. Ocean. Phys. 45 (3), 314–323 (2009).CrossRefGoogle Scholar
  44. 44.
    G. I. Gorchakov, E. G. Semoutnikova, P. S. Glyadkov, A. V. Karpov, A. B. Kolesnikova, and E. A. Lezina, “Vertical profiles of concentrations of carbonmonoxide and nitrogen oxides in the urban atmospheric boundary layer,” Atmos. Ocean. Opt. 22 (6), 617–625 (2009).CrossRefGoogle Scholar
  45. 45.
    G. I. Gorchakov, E. G. Semutnikova, E. S. Baikova, and A. V. Karpov, “Week cycle of the daily behavior of CO concentration in the surface and boundary urban air layers,” Dokl. Akad. Nauk 455 (4), 459–463 (2014).Google Scholar
  46. 46.
    G. I. Gorchakov, E. G. Semutnikova, A. V. Karpov, A. B. Kolesnikova, E. S. Baikova, and O. S. Zadorozhnaya, “Air pollution week-long cycle in Moscow: Refinement of quantitative parameters and statistical forecasting of impurity concentration,” Opt. Atmos. Okeana 23 (9), 784–792 (2010).Google Scholar
  47. 47.
    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley Intersci., New York, 1998).Google Scholar
  48. 48.
    G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, E. A. Miller, and S. I. Sitanskii, “Moscow heat island in the blocking anticyclone in summer 2010,” Dokl. Akad. Nauk 456 (5), 591–595 (2014).Google Scholar
  49. 49.
    I.A. Gorchakova and I.I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).CrossRefGoogle Scholar
  50. 50.
    I. N. Sokolik and G. Golitsyn, “Investigation of optical and radiative properties of atmospheric dust aerosol,” Atmos. Environ. 27A (16), 2509–2517 (1993).ADSCrossRefGoogle Scholar
  51. 51.
    E. P. Yausheva, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Effect of forest fire smokes on optical and microphysical parameters of submicron aerosol and soot in Tomsk region in summer 2016,” in Abstracts of XXIII Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2016), p. 9 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. G. Semoutnikova
    • 1
    Email author
  • G. I. Gorchakov
    • 2
  • S. A. Sitnov
    • 2
  • V. M. Kopeikin
    • 2
  • A. V. Karpov
    • 2
  • I. A. Gorchakova
    • 2
  • T. Ya. Ponomareva
    • 3
  • A. A. Isakov
    • 2
  • R. A. Gushchin
    • 2
  • O. I. Datsenko
    • 2
  • G. A. Kurbatov
    • 1
  • G. A. Kuznetsov
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Hydrometeorological Service of RussiaMoscowRussia

Personalised recommendations