Skip to main content
Log in

Systematization of Sources of Data on Spectral Line Parameters for the CO2 Molecule and Its Isotopologues in the W@DIS Information System

  • Optical Models and Databases
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Spectral line profiles are used to process experimental spectra when solving the inverse problem of computing the collisional parameters of the profiles [1]. The difference in their shapes is due to different physical conditions (hard/soft collisions, high/low pressures, etc.). Numerous different profiles are used in the study of the spectral line parameters of carbon dioxide, methane, methyl halides, and other molecules. The diversity of the line profiles used in the systematization of spectral line parameters adds complexity to the structures of data available in information systems and to the structures of individuals involved in ontological descriptions of the spectral line properties, which characterize the line profiles. A brief classification of spectral line profiles and their parameters is given, and the results of the systematization of spectral data relating to different line profiles used in processing carbon dioxide spectra are presented. The line profiles available in the library are described, and a system is built for importing spectral line parameters derived from the solution of the direct and inverse problems. Computer software for an automatic description of the properties of the solutions imported has been developed. The basic properties of the spectral data compiled in the W@DIS information system provide a description of the outcome of the imported data quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Bykov, A. Z. Fazliev, N. N. Filippov, A. V. Kozodoev, A. I. Privezentsev, L. N. Sinitsa, M. V. Tonkov, and M. Yu. Tretyakov, “Distributed information system on atmospheric spectroscopy,” Geophys. Res. Abstr. 9, 01906 (2007).

    Google Scholar 

  2. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, K. Fox, L. S. Rothman, and J. S. Garing, AFCRL Atmospheric Absorption Line Parameters Compilation. Environmental Research Paper No. 434 (Air Force Systems Command, USAF, 1973).

    Google Scholar 

  3. A. Chedin, N. Husson, N. A. Scott, I. Jobard, I. Cohen-Hallaleh, and A. Berroir, La banque de donnes GEISA, Description et logiciel d’utilisation. Internal Rep. LMD 108 (Ecole Polytechnique, Palaiseau, France, 1980).

    Google Scholar 

  4. L. S. Rothman, I. E. Gordon, C. Hill, R. V. Kochanov, P. Wcislo, and J. Wilzewski, “HITRAN in the XXI-st century: Beyond Voigt and beyond Earth,” in Abstr. 70th Inter. Sympos. Mol. Spectrosc, June 20, 2015, Illinois. Champaign-Urbana. http://hdl.handle.net/2142/79346/

    Google Scholar 

  5. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. Carleer, C. Jr. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, Auwera J. Vander, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96 (2), 139–204 (2005).

    Article  ADS  Google Scholar 

  6. A. G. Császár, A. Z. Fazliev, and J. Tennyson, “W@DIS—Prototype information system for systematization of spectral data of water,” in Abstr. 20th Colloquium High Resolution Mol. Spectrosc., 2007, p. 270–271. http://vesta.u-bourgogne.fr/hrms/Program/AbsBk. pdf.gz.

    Google Scholar 

  7. N. Lavrentiev, A. Privezentsev, N. Filippov, and A. Fazliev, “Complete set of published spectral data on CO2 molecule,” in Abstr. 22nd Colloquium High Resolution Mol. Spectrosc. 2011, p. 353–354.

    Google Scholar 

  8. T. Hikida, K. M. T. Yamada, M. Fukabori, T. Aoki, and T. Watanabe, “Intensities and self-broadening coefficients of the CO2 ro-vibrational transitions measured by a near-IR diode laser spectrometer,” J. Mol. Spectrosc. 232 (2), 202–212 (2005).

    Article  ADS  Google Scholar 

  9. W. Voigt, “The distribution of intensity within spectral lines,” Phys. Z. 14, 377–381 (1913).

    Google Scholar 

  10. P. W. Anderson, “Pressure broadening in the microwave and infrared regions,” Phys. Rev. 76, 647–661 (1949).

    Article  ADS  MATH  Google Scholar 

  11. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218 (1961).

    Article  ADS  MATH  Google Scholar 

  12. M. Nelkin and A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. 135, 4 (1964).

    Google Scholar 

  13. S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).

    Article  ADS  Google Scholar 

  14. R. Ciurylo, “Shapes of pressure-and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. 58, 1029 (1998).

    Article  ADS  Google Scholar 

  15. P. W. Rosenkranz, Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23 (4), P. 498 (1975).

    Article  ADS  Google Scholar 

  16. A. S. Pine, “Line mixing sum rules for the analysis of multiplet spectra,” J. Quant. Spectrosc. Radiat. Transfer. 57 (2), 145–155 (1997).

    Article  ADS  Google Scholar 

  17. E. W. Smith, “Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures,” J. Chem. Phys. 74, 6658 (1981).

    Article  ADS  Google Scholar 

  18. A. Predoi-Cross, Caiyan Luo, R. Berman, J. R. Drummond, and A. D. May, “Line strengths, self-broadening, and line mixing in the 2000 ← 0110 (Σ ← Π) Q branch of carbon dioxide,” J. Chem. Phys. 112, 8367 (2000)

    Article  ADS  Google Scholar 

  19. A. Predoi-Cross, A. D. May, A. Vitcu, J. R. Drummond, J.-M. Hartmann, and C. Boulet, “Broadening and line mixing in the 2000 ← 0110, 1110 ← 0000 and 1220 ← 0110Q branches of carbon dioxide: Experimental results and energy-corrected sudden modeling,” J. Chem. Phys. 120 (22), 10520 (2004). doi 10.1063/1.1738101

    Article  ADS  Google Scholar 

  20. P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12 (9), 1331–1342 (1972).

    Article  ADS  Google Scholar 

  21. F. Rohart, H. Mader, and H.-W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients,” J. Chem. Phys. 101 (8), 6475 (1994).

    Article  ADS  Google Scholar 

  22. D. Lisak, D. K. Havey, and J. T. Hodges, “Spectroscopic line parameters of water vapor for rotationvibration transitions near 7180 cm–1,” Phys. Rev., A 79 (5), 052507 (2009).

    Article  ADS  Google Scholar 

  23. N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).

    Article  ADS  Google Scholar 

  24. F. Pinter, “Rotational combination line width of N2 and CO2 as a function of the quantum number J,” Opt. Spectrosc. 17 (5), 428 (1964).

    ADS  Google Scholar 

  25. C. Boulet, E. Arie, J. P. Bouanich, and N. Lacome, “Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbe par N2,” Can. J. Phys. 50 (18), 2178–2185 (1972). doi 10.1139/p72–288

    Article  ADS  Google Scholar 

  26. L. D. Tubbs and D. Williams, “Broadening of infrared absorption lines at reduced temperatures: Carbon dioxide,” J. Opt. Soc. Am. 62 (2), 284–289 (1972). doi 10.1364/JOSA.62.000284

    Article  ADS  Google Scholar 

  27. C. Young, R. W. Bell, and R. E. Chapman, “Variation of N2-broadened collisional width with rotational quantum number for the 10.4-μm CO2 band,” Appl. Phys. Lett. 20 (8), 278 (1972). doi 10.1063/1.1654148

    Article  ADS  Google Scholar 

  28. C. Boulet, P. Isnard, and E. Arie, “Largeurs des raies de la transition 00°1 > (10°0; 02°0)I de CO2 perturbe par l’argon,” J. Quant. Spectrosc. Radiat. Transfer 14 (7), 637–649 (1974). doi 10.1016/0022-4073(74)90039-9

    Article  ADS  Google Scholar 

  29. T. W. Meyer, C. K. Rhodes, and H. A. Haus, “Highresolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A 12 (5), 1993–2008 (1975). doi 10.1103/Phys-RevA.12.1993

    Article  ADS  Google Scholar 

  30. H. Oodate and T. Fujioka, “Measurements of 4.2 μm CO2 pressure broadening by using an HBr chemical laser,” J. Chem. Phys. 68 (12), 5494–5497 (1978). doi 10.1063/1.435676

    Article  ADS  Google Scholar 

  31. W. G. Planet, G. L. Tettemer, and J. S. Knoll, “Temperature dependence of intensities and widths of N2-broadened lines in the 15 μm CO2 band from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 20 (6), 547–556 (1978). doi 10.1016/0022-4073(78)90025-0

    Article  ADS  Google Scholar 

  32. C. B. Suarez and F. P. Valero, “Intensities, self-broadening, and broadening by Ar and N2 for the 3011II < 000 band of CO2 measured at different temperatures,” J. Mol. Spectrosc. 71 (1), 46–63 (1978). doi 10.1016/0022-2852(78)90074-7

    Article  ADS  Google Scholar 

  33. F. P. Valero and C. B. Suarez, “Measurement at different temperatures of absolute intensities, line halfwidths, and broadening by Ar and N2 for the 3001II,” J. Quant. Spectrosc. Radiat. Transfer 19 (6), 579–590 (1978). doi 10.1016/0022-4073(78)90092-4

    Article  ADS  Google Scholar 

  34. W. G. Planet and G. L. Tettemer, “Temperaturedependent intensities and widths of N2-broadened CO2 lines at 15 μm from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 22 (4), 345–354 (1979). doi 10.1016/0022-4073(79)90072-4

    Article  ADS  Google Scholar 

  35. F. P. Valero, C. B. Suarez, and R. W. Boese, “Intensities and half-widths at different temperatures for the 201III<000 band of CO2 at 4854 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 22 (1), 93–99 (1979). doi 10.1016/0022-4073(79)90110-9

    Article  ADS  Google Scholar 

  36. G. L. Tettemer and W. G. Planet, “Intensities and pressure-broadened widths of CO2 R-branch lines at 15 μm from tunable laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 24 (4), 343–345 (1980). doi 10.1016/0022-4073(80)90098-9

    Article  ADS  Google Scholar 

  37. F. P. Valero, C. B. Suarez, and R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II < 000 band of 12C16O2 at 4978cm–1,” J. Quant. Spectrosc. Radiat. Transfer 23 (3), 337–341 (1980). doi 10.1016/0022-4073(80)90111-9

    Article  ADS  Google Scholar 

  38. V. M. Devi, B. Fridovich, G. D. Jones, and D. G. S. Snyder, “Diode laser measurements of strengths, half-widths, and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105 (1), 61–69 (1984). doi 10.1016/0022-2852(84)90103-6

    Article  ADS  Google Scholar 

  39. M. S. Abubakar and J. H. Shaw, “Carbon dioxide band intensities and linewidths in the 8–12-μm region,” Appl. Opt. 25, 1196–1203 (1986). doi 10.1364/AO.25.001196

    Article  ADS  Google Scholar 

  40. C. Cousin, R. L. Doucen, J. P. Houdeau, C. Boulet, and A. Henry, “Air broadened linewidths, intensities, and spectral line shapes for CO2 at 4.3 μm in the region of the AMTS instrument,” Appl. Opt. 25, 2434–2439 (1986). doi 10.1364/AO.25.002434

    Article  ADS  Google Scholar 

  41. B. Gentry and L. L. Strow, “Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser,” J. Chem. Phys. 86, 5722 (1987). doi 10.1063/1.452770

    Article  ADS  Google Scholar 

  42. L. A. Gross and P. R. Griffiths, “Pressure and temperature dependence of the self-broadened linewidths of the carbon dioxide laser bands,” Appl. Opt. 26 (11), 2250–2255 (1987).

    Article  ADS  Google Scholar 

  43. J. W. C. Johns, “Absolute intensity and pressure broadening measurements of CO2 in the 4.3-μm region,” J. Mol. Spectrosc. 125 (2), 442–464 (1987). doi 10.1016/0022-2852(87)90109-3

    Article  ADS  Google Scholar 

  44. V. Dana and A. Valentin, “Determination of line parameters from FTS spectra,” Appl. Opt. 27, 4450–4453 (1988).

    Article  ADS  Google Scholar 

  45. T. Huet, N. Lacome, and A. Levy, “Linewidths and strengths in the Q branch of the 1000 < 0110 transition of CO2 near 14 μm,” J. Mol. Spectrosc. 128 (1), 206–215 (1988). doi 10.1016/0022-2852(88)90218-4

    Article  ADS  Google Scholar 

  46. M. Margottin-Maclou, P. Dahoo, A. Henry, A. Valentin, and L. Henry, “Self-, N2-, and O2-broadening parameters in the ν3 and ν1 + ν3 bands of 12C16O2,” J. Mol. Spectrosc. 131 (1), 21–35 (1988). doi 10.1016/0022-2852(88)90102-6

    Article  ADS  Google Scholar 

  47. L. Rosenmann, M. Y. Perrin, J.-M. Hartmann, and J. Taine, “Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805K and by N2 from 296 to 803K,” J. Quant. Spectrosc. Radiat. Transfer 40 (5), 569–576 (1988). doi 10.1016/0022-4073(88)90137-9

    Article  ADS  Google Scholar 

  48. L. Rosenmann, M. Y. Perrin, and J. Taine, “Collisional broadening of CO2 IR lines. I. Diode laser measurements for CO2–N2 mixtures in the 295–815K temperature range,” J. Chem. Phys. 88 (5), 2995 (1988). doi 10.1063/1.453940

    Article  ADS  Google Scholar 

  49. V. Dana, A. Valentin, A. Hamdouni, and L. S. Rothman, “Line intensities and broadening parameters of the 11101 < 10002 band of 12C16O2,” Appl. Opt. 28, 2562–2566 (1989). doi 10.1364/AO.28.002562

    Article  ADS  Google Scholar 

  50. C. B. Suarez and F. P. Valero, “Temperature dependence of self-broadened halfwidths of CO2,” J. Quant. Spectrosc. Radiat. Transfer 43 (4), 327–334 (1990). doi 10.1016/0022-4073(90)90022-X

    Article  ADS  Google Scholar 

  51. V. Dana, J.-Y. Mandin, G. Guelachvili, Q. Kou, M. Morillon-Chapey, R. B. Wattson, and L. S. Rothman, “Intensities and self-broadening coefficients of 12C16O2 lines in the laser band region,” J. Mol. Spectrosc. 152 (2), 328–341 (1992). doi 10.1016/0022-2852(92)90073-W

    Article  ADS  Google Scholar 

  52. V. M. Devi, D. C. Benner, C. P. Rinsland, and M. A. H. Smith, “Measurements of pressure broadening and pressure shifting by nitrogen in the 4.3-μm band of 12C16O2,” J. Quant. Spectrosc. Radiat. Transfer 48 (5), 581–589 (1992). doi 10.1016/0022-4073(92)90122-K

    Article  ADS  Google Scholar 

  53. J. Y. Mandin, V. Dana, M. Badaoui, A. Barbe, A. Hamdouni, and J. J. Plateaux, “Measurements of pressure-broadening and pressure-shifting coefficients from FT spectra,” J. Mol. Spectrosc. 164 (2), 328–337 (1994).

    Article  ADS  Google Scholar 

  54. J. Y. Mandin, V. Dana, M. Y. Allout, L. Regalia, A. Barbe, and J. J. Plateaux, “Line intensities and selfbroadening coefficients in 10012–10001 band of 12C16O2 centered at 2224.657 cm–1,” J. Mol. Spectrosc. 170 (2), 604–607 (1995). doi 10.1006/jmsp.1995.1095

    Article  ADS  Google Scholar 

  55. V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, “Air-and N2-broadening coefficients and pressure-shift coefficients in the 12C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transfer 59 (3), 137–149 (1998). doi 10.1016/S0022-4073(97)00113-1

    Article  ADS  Google Scholar 

  56. C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution measurements of line intensity, broadening and shift of CO2 around 2 μm,” Eur. Phys. J., D 6, 327–332 (1999).

    Article  ADS  Google Scholar 

  57. M. De Rosa, C. Corsi, M. Gabrysch, and F. D’Amato, “Collisional broadening and shift of lines in the 2v1 + 2v2 + v3 band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 61 (1), 97–104 (1999). doi 10.1016/S0022-4073(97)00207-0

    Article  ADS  Google Scholar 

  58. C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “High-resolution investigation of the weak ν1 + 3–+ ν3 band of CO2 around 2 μm,” Appl. Phys., B 70 (2), 879–881 (2000). doi 10.1007/s003400000232

    Article  ADS  Google Scholar 

  59. J. Henningsen and H. Simonsen, “(2201–0000) band of CO2 at 6348 cm–1: Line strengths, broadening parameters, and pressure shifts,” J. Mol. Spectrosc. 203 (1), 16–27 (2000). doi 10.1006/jmsp.2000.8157

    Article  ADS  Google Scholar 

  60. A. Predoi-Cross, C. Luo, R. Berman, J. R. Drummond, and A. D. May, Line strengths, self-broadening, and line mixing in the 2001,” J. Chem. Phys. 112 (19), 8367–8377 (2000). doi 10.1063/1.481480

    Article  ADS  Google Scholar 

  61. V. M. Devi, D. C. Benner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transfer 76 (3-4), 411–434 (2003). doi 10.1016/S0022-4073(02)00068-7

    Article  ADS  Google Scholar 

  62. I. Pouchet, V. Zeninari, B. Parvitte, and G. Durry, “Diode laser spectroscopy of CO2 in the 1.6 μm region for the in situ sensing of the middle atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 83 (3-4), 619–628 (2004). doi 10.1016/S0022-4073(03)00108-0

    Article  ADS  Google Scholar 

  63. V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, “In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm: A spectroscopic study,” Infrared Phys. Technol. 45, 229–237 (2004). doi 10.1016/j.infrared. 2003.11.004

    Article  ADS  Google Scholar 

  64. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Self-broadened widths and shifts of 12C16O2: 4750–7000 cm–1,” J. Mol. Spectrosc. 239 (2), 243–271 (2006). doi 10.1016/j.jms.2006.08.003 1 ν2 1 ν2

    Article  ADS  Google Scholar 

  65. J. S. Li, K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao, “Pressure-induced line broadening for the (30012)–(00001) band of CO2 measured with tunable diode laser photoacoustic spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 109 (9), 1575–1585 (2008). doi 10.1016/j.jqsrt.2007.10.014

    Article  ADS  Google Scholar 

  66. J. S. Li, K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao, “Self-, N2-and O2-broadening coefficients for the 12C16O2 transitions near-IR measured by a diode laser photoacoustic spectrometer,” J. Mol. Spectrosc. 252 (1), 9–16 (2008). doi 10.1016/j.jms.2008.03.018

    Article  ADS  Google Scholar 

  67. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Spectroscopic database of CO2 line parameters: 4300–7000 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 109 (6), 906–921 (2008). doi 10.1016/j.jqsrt.2007.12.004

    Article  ADS  Google Scholar 

  68. O. S. Gulidova, R. E. Asfin, I. M. Grigoriev, and N. N. Filippov, “Air pressure broadening and shifting of high-J lines of (00011),” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2315–2320 (2010). doi 10.1016/j.jqsrt.2010.04.027

    Article  ADS  Google Scholar 

  69. K. I. Arshinov, A. S. Dudarenok, N. N. Lavrentieva, and V. V. Nevdakh, “Collisional broadening of CO2 1000–0001 transition absorption lines by N2O molecules,” J. Appl. Spectrosc. 78 (5), 646–649 (2011). doi 10.1007/s10812-011-9512-z

    Article  ADS  Google Scholar 

  70. N. H. Ngo, X. Landsheere, E. Pangui, S. B. Morales, and J.-M. Hartmann, “Self-broadening of 16O12C16O ν3-band lines,” J. Mol. Spectrosc. 306, 33–36 (2014). doi 10.1016/j.jms.2014.10.005

    Article  ADS  Google Scholar 

  71. T. M. Petrova, A. M. Solodov, A. A. Solodov, O. M. Lyulin, Yu. G. Borkov, S. A. Tashkun, and V. I. Perevalov, “Measurements of CO2 line parameters in the 9250–9500 cm–1 and 10.700–10.860 cm–1 regions,” J. Quant. Spectrosc. Radiat. Transfer 164, 109–116 (2015). doi 10.1016/j.jqsrt.2015.06.001

    Article  ADS  Google Scholar 

  72. A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and V. M. Devi, “Measurement and computations for temperature dependences of selfbroadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1065–1079 (2010). doi 10.1016/j.jqsrt.2010.01.003

    Article  ADS  Google Scholar 

  73. F. Thibault J. Boissoles, R. Le Doucen, J. P. Bouanich, Ph. Arcas, and C. Boulet, “Pressure induced shifts of of CO2 lines: measurements in the 0003–0000 band and theoretical analysis,” J. Chem. Phys. 96 (7), 4945–4953 (1992). doi 10.1063/1.462737

    Article  ADS  Google Scholar 

  74. L. Ozanne, J.-P. Bouanich, R. Rodrigues, J.-M. Hartmann, G. Blanquet, and J. Walrand, “Diode-laser measurements of He-and N2-broadening coefficients and line-mixing effects in the Q-branch of the v1–v2 band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 59 (3), 337–344 (1998). doi 10.1016/S0022-4073(97)00133-7

    Article  ADS  Google Scholar 

  75. V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, “Nitrogen broadening and shift coefficients in the 4.2–4.5-μm bands of CO2,” J. Mol. Spectrosc. 76, 289–307 (2003). doi 10.1016/S0022-4073(02)00057-2

    Google Scholar 

  76. S. Nakamichi, Y. Kawaguchi, H. Fukuda, S. Enami, S. Hashimoto, M. Kawasaki, T. Umekawa, I. Morino, H. Suto, and G. Inoue, “Buffer-gas pressure broadening for the (3001)III–(0 0 0) band of CO2 measured with continuous-wave cavity ring-down spectroscopy,” Phys. Chem. Chem. Phys. 8, 364–368 (2006). doi 10.1039/b511772k

    Article  Google Scholar 

  77. L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: A comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101 (2), 325–338 (2006). doi 10.1016/j.jqsrt.2005.11.021

    Article  ADS  Google Scholar 

  78. T. Tanaka, M. Fukabori, T. Sugita, H. Nakajima, T. Yokota, T. Watanabe, and Y. Sasano, “Spectral line parameters for CO2 bands in the 4.8-to 5.3-μm region,” J. Mol. Spectrosc. 239 (1), 1–10 (2006). doi 10.1016/j.jms.2006.05.013

    Article  ADS  Google Scholar 

  79. A. Predoi-Cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay, A. R. W. McKellar, and D. Hurtmans, “Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 < 00001 and 30013 < 00001 bands, line mixing, and speed dependence,” J. Mol. Spectrosc. 245 (1), 34–51 (2007). doi 10.1016/j.jms.2007.07.004

    Article  ADS  Google Scholar 

  80. R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 246 (2), 133–157 (2007). doi 10.1016/j.jms.2007.09.005

    Google Scholar 

  81. A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys., B 90 (3), 619–628 (2008). doi 10.1007/s00340-007-2925-y

    Article  ADS  Google Scholar 

  82. L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, and V. Zeninari, “A complete study of CO2 line parameters around 4845 cm–1 for lidar applications,” J. Quant. Spectrosc. Radiat. Transfer 109 (3), 426–434 (2008). doi 10.1016/j.jqsrt.2007.06.003

    Article  ADS  Google Scholar 

  83. D. C. Benner, C. E. Miller, and V. M. Devi, “Constrained multispectrum analysis of CO2–Ar broadening at 6227 and 6348 cm–1,” Can. J. Phys. 87 (5), 499–515 (2009). doi 10.1139/P09-014

    Article  ADS  Google Scholar 

  84. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the nearinfrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130 (18), 184306 (2009). doi 10.1063/1.3125965

    Article  ADS  Google Scholar 

  85. T. Cai, G. Gao, X. Gao, W. Chen, and G. Liu, “Diode laser measurement of line strengths and air-broadening coefficients of CO2 and CO in the 1.57 μm region for combustion diagnostics,” Mol. Phys. 108 (5), 539–545 (2010). doi 10.1080/00268970903547934

    Article  ADS  Google Scholar 

  86. V. M. Devi, D. C. Benner, C. E. Miller, and A. Predoi-Cross, “Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis,” J. Quant. Spectrosc. Radiat. Transfer 111 (16), 2355–2369 (2010). doi 10.1016/j.jqsrt.2010.06.003

    Article  ADS  Google Scholar 

  87. J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, P. H. Flamant, F. Gibert, and V. Zeninari, “Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 μm for lidar application,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1411–1419 (2011). doi 10.1016/j.jqsrt.2011.01.030

    Article  ADS  Google Scholar 

  88. Q. Deliere, L. Fissiaux, and M. Lepere, “Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide,” J. Mol. Spectrosc. 272 (1), 36–42 (2012). doi 10.1016/j.jms.2012.01.002

    Article  ADS  Google Scholar 

  89. J. Lamouroux, R. R. Gamache, A. L. Laraia, J.-M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2. III: Self collisions,” J. Quant. Spectrosc. Radiat. Transfer 113 (12), 1536–1546 (2012). doi 10.1016/j.jqsrt.2012.03.035

    Article  ADS  Google Scholar 

  90. R. R. Gamache, J. Lamouroux, A. L. Laraia, J.-M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2, I: Collisions with N2,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 976–990 (2012). doi 10.1016/j.jqsrt.2012.02.014

    Article  ADS  Google Scholar 

  91. J. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 μm with a tunable diode laser spectrometer,” Spectrochimic. Acta, Part A 85 (1), 74–78 (2012). doi 10.1016/j.saa.2011.09.016

    Article  ADS  Google Scholar 

  92. R. Hashemi, H. Rozario, A. Ibrahim, and A. Predoi-Cross, “Line shape study of the carbon dioxide laser band I,” Can. J. Phys. 20 (2013). doi 10.1139/cjp-2013-0051

  93. Y. Lu, A.-W. Liu, X.-F. Li, J. Wang, C.-F. Cheng, Y. R. Sun, R. Lambo, and S.-M. Hu, “Line parameters of the 782 nm band of CO2,” Astrophys. J. 775 (1), 71 (2013). doi 10.1088/0004-637X/775/1/71

    Article  ADS  Google Scholar 

  94. A. Predoi-Cross, W. Liu, C. Holladay, A. V. Unni, I. Schofield, A. R. W. McKellar, and D. Hurtmans, “Line profile study of transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide perturbed by air,” J. Quant. Spectrosc. Radiat. Transfer 246 (1), 98–112 (2007). doi 10.1016/j.jms.2007.08.008

    Google Scholar 

  95. A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and V. M. Devi, “Measurement and computations for temperature dependences of selfbroadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1065–1079 (2010). doi 10.1016/j.jqsrt.2010.01.003

    Article  ADS  Google Scholar 

  96. Q. Delière, L. Fissiaux, and M. Lepère, “Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide,” J. Mol. Spectrosc. 272 (1), 36–42 (2012). doi 10.1016/j.jms.2012.01.002

    Article  ADS  Google Scholar 

  97. L. Daneshvar, T. Foldes, J. Buldyreva, and Auwera J. Vander, “Infrared absorption by pure CO2 near 3340 cm−1: Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures,” J. Quant. Spectrosc. Radiat. Transfer 149, 258–274 (2014). doi 10.1016/j.jqsrt.2014.08.007

    Article  ADS  Google Scholar 

  98. V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm–1: Positions, intensities, and airand self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242 (2), 90–117 (2007). doi 10.1016/j.jms.2007.02.018

    Article  ADS  Google Scholar 

  99. V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6227.9 cm–1: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band,” J. Mol. Spectrosc. 245 (1), 52–80 (2007). doi 10.1016/j.jms.2007.05.015

    Article  ADS  Google Scholar 

  100. A. Predoi-Cross, A. V. Unni, W. Liu, I. Schofield, C. Holladay, A. R. W. McKellar, and D. Hurtmans, “Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence,” J. Mol. Spectrosc. 245 (1), 34–51 (2007). doi 10.1016/j.jms.2007.07.004

    Article  ADS  Google Scholar 

  101. T. Hikida and K. M. T. Yamada, “N2-and O2-broadening of CO2 for the (3001)III ← (0000) band at 6231 cm−1,” J. Mol. Spectrosc. 239 (2), 154–159 (2006). doi 10.1016/j.jms.2006.07.001

    Article  ADS  Google Scholar 

  102. R. Berman, P. Duggan, P. M. Sinclair, A. D. May, and J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ ν2Q branch of CO2,” J. Mol. Spectrosc. 182 (2), 350–363 (1997). doi 10.1006/jmsp.1996.7226

    Article  ADS  Google Scholar 

  103. G. Larcher, X. Landsheere, M. Schwell, and H. Tran, “Spectral shape parameters of pure CO2 transitions near 1.6 μm by tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 164, 82–88 (2015). doi 10.1016/j.jqsrt.2015.05.013

    Article  ADS  Google Scholar 

  104. V. M. Devi, D. C. Benner, C. E. Miller, and A. Predoi-Cross, “Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis,” J. Quant. Spectrosc. Radiat. Transfer 111 (16), 2355–2369 (2010). doi 10.1016/j.jqsrt.2010.06.003

    Article  ADS  Google Scholar 

  105. A. Predoi-Cross, C. Luo, R. Berman, J. R. Drummond, and A. D. May, “Line strengths, self-broadening, and line mixing in the 2001,” J. Chem. Phys. 112 (19), 8367–8377 (2000). doi 10.1063/1.481480

    Article  ADS  Google Scholar 

  106. http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2013/part4/AKLPF.

  107. http://wadis.saga.iao.ru/co2/ontology/.

  108. http://wadis. saga.iao.ru/co2/ontology/band/.

  109. http://elbib.ru /index.phtml?page=elbib /rus/journal/2012 /part3/AKLPF.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Fazliev.

Additional information

Original Russian Text © A.V. Kozodoev, A.I. Privezentsev, A.Z. Fazliev, N.N. Filippov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozodoev, A.V., Privezentsev, A.I., Fazliev, A.Z. et al. Systematization of Sources of Data on Spectral Line Parameters for the CO2 Molecule and Its Isotopologues in the W@DIS Information System. Atmos Ocean Opt 31, 201–215 (2018). https://doi.org/10.1134/S1024856018020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018020082

Keywords

Navigation