Skip to main content

Filamentation of Ultrashort Laser Pulse Train in Air

Abstract

Results of numerical simulation of self-action in air of a sequence of ultrashort laser pulses with a carrier in the near and mid-IR regions are presented. We show that the use of a 10.6-μm pulse train allows significant elongation of the plasma channel generated during pulse filamentation and enhancement of its spatial connectivity. The filamentation of a submicron pulse train does not visibly change filamentation region parameters.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, “White-light filaments for atmospheric analysis,” Science 301 (7), 61–64 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    G. Mechain, C. D. Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247 (1–3), 171–180 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Self-Focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009), p. 3–19.

    Google Scholar 

  4. 4.

    A. Couairon and A. Myzyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441 (2–4), 47–189 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56, 123–140 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    N. Khan, N. Mariun, I. Aris, and J. Yeak, “Laser-triggered lightning discharge,” New J. Phys. 4, 20 (2002).

    Article  Google Scholar 

  7. 7.

    G. Fibich, Y. Sivan, Y. Ehrlich, E. Louzon, M. Fraenkel, S. Eisenmann, Y. Katzir, and A. Zigler, “Control of the collapse distance in atmospheric propagation,” Opt. Express 14 (12), 4946–4957 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    R. Nuter, S. Skupin, and L. Berge, “Chirp-induced dynamics of femtosecond filaments in air,” Opt. Lett. 30, 917–919 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B 80, 267–275 (2004).

    ADS  Article  Google Scholar 

  10. 10.

    R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L.Woste, P. Bejot, L. Bonacina, and J.-P. Wolf, “Optimal control of filamentation in air,” Appl. Phys. Lett. 89, 171117 (2006).

    ADS  Article  Google Scholar 

  11. 11.

    S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, “Concatenation of plasma filaments created in air by femtosecond infrared laser pulses,” Appl. Phys., B 76, 609–612 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18, 063509 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, “Propagation of twin laser pulses in air and concatenation of plasma strings produced by femtosecond infrared filaments,” Opt. Commun. 225, 177–192 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev., A 86, 023850 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    A. Chen, S. Li, Sh. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20 (10), 103110 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Z. Henis, G. Milikh, K. Papadopoulos, and A. Zigler, “Generation of controlled radiation sources in the atmosphere using a dual femtosecond/nanosecond laser pulse,” J. Appl. Phys. 103, 103111 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    T.-J. Wang, J.-F. Daigle, S. Yuan, F. Theberge, M. Chateauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev., A 83, 053801 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    S. Li, L. Sui, Sh. Li, D. Liu, H. Li, Q. Li, F. Zhang, A. Chen, Y. Jiang, and M. Jin, “Filamentation induced by collinear femtosecond double pulses with different wavelengths in air,” Phys. Plasmas 22, 093113 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    A. A. Ionin, S. I. Kudryashov, D. V. Mokrousova, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Plasma channels under filamentation of infrared and ultraviolet double femtosecond laser pulses,” Laser Phys. Lett. 11, 016002 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Yu. E. Geints and A. A. Zemlyanov, “Numerical simulation of self-action of CO2 laser TW picosecond pulses in air,” Opt. Atmos. Okeana 26 (9), 716–725 (2013).

    Google Scholar 

  21. 21.

    M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. 199, 5–76 (2011).

    Google Scholar 

  23. 23.

    Yu. E. Geints and A. A. Zemlyanov, “Model of optical nonlinearity of air in the mid-IR wavelength range,” Quantum Electron. 44 (9), 815–823 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Yu. P. Raizer, Physics of Gas Discharge (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  25. 25.

    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” J. Exp. Theor. Phys. 23 (5), 924–934 (1966).

    ADS  Google Scholar 

  26. 26.

    M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express 19 (8), 7717–7725 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi, “Amplification of multi-Gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect,” Opt. Express 20 (13), 13762–13768 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Geints.

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Zemlyanov, A.A. Filamentation of Ultrashort Laser Pulse Train in Air. Atmos Ocean Opt 31, 112–118 (2018). https://doi.org/10.1134/S1024856018020069

Download citation

Keywords

  • ultrashort laser radiation
  • self-focusing
  • laser filamentation
  • laser plasma
  • pulse train