Skip to main content

Air-Temperature Dependence of the Ozone Generation Rate in the Surface Air Layer

Abstract

The temperature dependence of the atmospheric ozone generation rate was studied based on measurements in a reference area. The type of this dependence is determined by the method based on the comparison of variations in the ozone concentration when a hot or cold wave passes above the measurement post. This approach allowed us to derive for the first time the quantitative, but not qualitative, dependence type. The coefficients of the expression used depend on both the air temperature and initial ozone concentration. Thus, at the long-term minimum of the surface ozone concentration (1999) at a temperature of 30°C, its increase of 5 μg/m3 corresponded to a temperature change of 1°C. At a maximal concentration (2001) and the same temperature, the increase is almost 25 μg/m3 per 1°C. In the intermediate periods (1997 and 2010), it was about 14 μg/m3 per 1°C. The analysis shows that the quadratic character of the given dependence is conditioned by the nonlinear increase in reaction constants and the quadratic increase in hydrocarbon emissions by vegetation with increasing air temperature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams, “Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer,” Atmos. Chem. Phys. 15 (15), 8889–8973 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    P. Pavón-Domínguez, F. J. Jiménez-Hornero, and E. Gutiérrez de Ravé, “Proposal for estimating groundlevel ozone concentrations at urban areas based on multivariate statistical methods,” Atmos. Environ. 90, 59–70 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Liu Pao-Wen Grace, Tsai Jiun-Horng, Lai Hsin-Chih, Tsai Der-Min, and Li Li-Wei, “Establishing multiple regression models for ozone sensitivity analysis to temperature variation in Taiwan,” Atmos. Environ. 79, 225–235 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    N. Otero, J. Sillmann, J. L. Schnell, H. W. Rust, and T. Butler, “Synoptic and meteorological drivers of extreme ozone concentrations over Europe,” Environ. Res. Lett. 11, 024005 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    V. Gvozdic, E. Kovac-Andric, and J. Brana, “Influence of meteorological factors NO2, SO2, CO and PM10 on the concentration of O3 in the urban atmosphere of eastern Croatia,” Environ. Model. Assess. 16 (5), 491–501 (2011).

    Article  Google Scholar 

  6. 6.

    A. A. Silva and L. M. Tomaz, “Surface ozone concentrations and local cloud cover at an urban, tropical site in the Southern hemisphere,” J. Atmos. Sol.-Terr. Phys. 105–106, 54–60 (2013).

    Article  Google Scholar 

  7. 7.

    L. D. Monache, J. P. Hacher, Y. Zhou, X. Deng, and R. B. Stull, “Probabilistic aspect of meteorological and ozone regional ensemble forecasts,” J. Geophys. Res. 111, D24307 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    S. Krupa, M. Nosal, J. A. Ferdinand, R. E. Stevenson, and J. M. Skelly, “A multi-variate stratistical model integrating passive sampler and meteorology data to predict the frequency distribution of hourly ambient ozone (O3) concentrations,” Environ. Pollut. 124 (1), 173–178 (2003).

    Article  Google Scholar 

  9. 9.

    N. Blond and R. Vautard, “Three-dimensional ozone analyses and their use for short-term ozone forecast,” J. Geophys. Res. 109, D17303 (2004).

    ADS  Article  Google Scholar 

  10. 10.

    L. D. Monache, T. Nipen, X. Deng, Y. Zhou, and R. Stull, “Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction,” J. Geophys. Res. 111, D05308 (2006).

    ADS  Google Scholar 

  11. 11.

    A. B. Chelani, “Prediction of daily maximum ground ozone concentration using support vector machine,” Environ. Monit. Assess. 162 (1–4), 169–176 (2010).

    Article  Google Scholar 

  12. 12.

    U. Brunelli, V. Piazza, L. Pignato, F. Sorbello, and S. Vitabile, “Two-days ahead prediction Palermo, Italy,” Atmos. Environ. 41 (14), 2967–2995 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    W. G. Cobourn, “Accuracy and reliability of an automated air quality forecast system for ozone in seven Kentucky metropolitan area,” Atmos. Environ. 41 (28), 5863–5875 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    A. M. Zvyagintsev and G. M. Kruchenitskii, “Empirical model for the surface ozone concentration near Moscow (Dolgoprudny),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32 (1), 96–100 (1996).

    Google Scholar 

  15. 15.

    A. M. Zvyagintsev and G. M. Kruchenitskii, “Surface ozone concentration in Moscow environs in 1991–1999,” Atmos. Ocean. Opt. 13 (2), 158–161 (2000).

    Google Scholar 

  16. 16.

    I. Yu. Shalygina, I. N. Kuznetsova, M. I. Nakhaev, E. A. Lezina, and A. M. Zvyagintsev, “Surface ozone forecasting in a big city (by the example of Moscow),” Atmos. Ocean. Opt. 20 (7), 594–600 (2007).

    Google Scholar 

  17. 17.

    A. M. Zvyagintsev, “Statistical forecast of surface ozone concentration in Moscow,” Rus. Meteorol. Hydrol. 33 (8), 499–506 (2008).

    Article  Google Scholar 

  18. 18.

    A. M. Zvyagintsev, I. B. Belikov, N. F. Elanskii, G. B. Kakadzhanova, I. N. Kuznetsova, O. A. Tarasova, and I. Yu. Shalygina, “Statistical modeling of daily maximum surface ozone concentrations,” Atmos. Ocean. Opt. 23 (4), 284–292 (2010).

    Article  Google Scholar 

  19. 19.

    P. N. Antokhin, B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “The comparison of different methods of statistical prediction of diurnal dynamics in the ground ozone concentration,” Opt. Atmos. Okeana 26 (12), 1082–1089 (2013).

    Google Scholar 

  20. 20.

    A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydypov, and T. S. Bal’zhanov, “Results of surface ozone monitoring in the atmosphere over Ulan-Ude,” Rus. Meteorol. Hydrol. 38 (12), 846–852 (2013).

    Article  Google Scholar 

  21. 21.

    D. Jasaitis, V. Vasiliauskien, R. Chadysien, and M. Peciuliene, “Surface ozone concentration and its relationship with UV radiation, meteorological parameters and radon on the eastern coast of the Baltic Sea,” Atmosphere 7 (27) (2016).

    Google Scholar 

  22. 22.

    Y. Y. Toh, S. F. Lim, and R. von Glasow, “The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia,” Atmos. Environ. 70, 435–446 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    V. S. Yerramsetti, N. G. Navlur, V. Rapolu, N. S. K. C. Dhulipala, P. R. Sinha, S. Srinavasan, and G. R. Anupoju, “Role of nitrogen oxides, black carbon, and meteorological parameters on the variation of surface ozone levels at a tropical urban site—Hyderabad, India,” CLEAN: Soil, Air, Water 41 (3), 215–225 (2013).

    Google Scholar 

  24. 24.

    N. V. Tereb, L. I. Milekhin, V. L. Milekhin, V. D. Gnilomedov, D. R. Nechaev, L. K. Kulizhnikova, and V. V. Shirotov, “Surface ozone values in anomalous summer 2010 measured in Obninsk, Rus. Meteorol. Hydrol. 38 (5), 14–25 (2013).

    Google Scholar 

  25. 25.

    Z. Zlatev, “Impact of future climatic changes on high ozone levels in European suburban areas,” Clim. Change 101 (3-4), 447–483 (2010).

    Article  Google Scholar 

  26. 26.

    I. S. A. Isaksen, T. K. Berntsen, S. B. Dalsoren, K. Eleftheratos, Y. Orsolini, B. Rognerud, F. Stordal, O. A. Sovde, C. Zerefos, and C. D. Holmes, “Atmospheric ozone and methane in a changing climate,” Atmosphere 5 (3), 518–535 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    A. M. Zvyagintsev, O. B. Blyum, A. A. Glazkova, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, E. A. Miller, V. A. Milyaev, A. P. Popikov, E. G. Semutnikova, O. A. Tarasova, and I. Yu. Shalygina, “Air pollution over European Russia and Ukraine under the hot summer conditions of 2010,” Izv. Atmos. Ocean. Phys. 47 (6), 699–707 (2011).

    Article  Google Scholar 

  28. 28.

    K. Dear, G. Ranmuthugala, T. Kjellstrom, C. Skinner, and I. Hanigan, “Effects of temperature and ozone on daily mortality during the August 2003 heat wave in France,” Arch. Environ. Occup. Health 60 (4), 205–212 (2005).

    Article  Google Scholar 

  29. 29.

    C. Ren, G. M. Williams, L. Morawska, K. Mengersen, and S. Tong, “Ozone modifies associations between temperature and cardiovascular mortality: Analysis of the NMMAPS data,” Occup. Environ. Med. 65, 255–260 (2008).

    Article  Google Scholar 

  30. 30.

    A. Melkonyan and P. Wagner, “Ozone and its projection in regard to climate change,” Atmos. Environ. 67, 287–295 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    K. V. Varotsos, M. Tombrou, and C. Giannakopoulos, “Statistical estimations of the number of future ozone exceedances due to climate change in Europe,” J. Geophys. Res.: Atmos 118 (12), 6080–6099 (2013).

    ADS  Google Scholar 

  32. 32.

    O. R. Cooper, R.-S. Gao, D. Tarasick, T. Leblanc, and C. Sweeney, “Long-term ozone trends at rural ozone monitorring sites across the United States, 1990-2010,” J. Geophys. Res. 117, D22307 (2012).

    ADS  Google Scholar 

  33. 33.

    D. J. Rasmussen, A. M. Fiore, V. Naik, L. W. Horowitz, S. J. McGinnis, and M. G. Schultz, “Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models,” Atmos. Environ. 47, 142–153 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    R. Yadav, L. K. Sahu, G. Beig, and S. N. A. Jaaffrey, “Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India,” Atmos. Res. 176–177, 96–107 (2016).

    Article  Google Scholar 

  35. 35.

    L. Shen, L. J. Mickley, and E. Gilleland, “Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory,” Geophys. Rev. Lett. 43 (8), 4017–4025 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    U. Im, K. Markakis, A. Poupkou, D. Melas, A. Unal, E. Gerasopoulos, N. Daskalakis, T. Kindap, and M. Kanakidou, “The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean,” Atmos. Chem. Phys. 11 (8), 3847–3864 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    S. S. Gunthe, G. Beig, and L. K. Sahu, “Study of relationship between daily maxima in ozone and temperature in an urban site in India,” Curr. Sci. 110 (10), 1994–1999 (2016).

    Article  Google Scholar 

  38. 38.

    Y. C. Lee, D. T. Shindell, G. Faluvegi, M. Wenig, Y. F. Lam, Z. Ning, S. Hao, and C. S. Lai, “Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China,” Tellus Ser. B 66, 23455 (2014). doi 10.3402/tellusb.v66.23455

    Article  Google Scholar 

  39. 39.

    S. Munir, T. M. Habeebullah, K. Ropkins, and A. R. Seroji, “Modelling ozone-temperature slope under atypically high temperature in arid climatic conditions of Makkah, Saudi Arabia,” Aerosol Air Qual. Res. 15 (4), 1281–1290 (2015).

    Article  Google Scholar 

  40. 40.

    R. Atkinson, D. L. Baulch, R. A. Cok, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry; Volume 1—Gas phase reactions of Ox, HOx, NOx and SOx species,” Atmos. Chem. Phys. 4 (6), 1461–1738 (2004).

    ADS  Article  Google Scholar 

  41. 41.

    V. A. Isidorov, Volatile Excretions of Plants: Composition, Rate, and Ecological Role (Alga, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  42. 42.

    Chang Chih-Chung, Wang Jia-Lin, Lung Shih-Chun Candice, Chang Chih-Yuan, Lee Po-Ju, Chew Clock, Liao Wei-Cheng, Chen Wei-Nai, and Ou-Yang Chang-Feng, “Seasonal characteristics of biogenic and anthropogenic isoprene in tropicalesubtropical urban environments,” Atmos. Environ. 99, 298–308 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    F. Brilli, B. Gioli, D. Zona, E. Pallozzi, T. Zenone, G. Fratini, C. Calfapietra, F. Loreto, I. A. Janssens, and R. Ceulemans, “Simultaneous leaf-and ecosystemlevel fluxes of volatile organic compounds from a poplarbased SRC plantation,” Agric. For. Meteorol. 187, 22–35 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    J.-H. Park, S. Fares, R. Weber, and A. H. Goldstein, “Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods,” Atmos. Chem. Phys. 14 (1), 231–244 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    E. Bourtsoukidis, J. Williams, J. Kesselmeier, S. Jacobi, and B. Bonn, “From emissions to ambient mixing ratios: Online seasonal field measurements of volatile organic compounds over a norway spruce-dominated forest in Central Germany,” Atmos. Chem. Phys. 14 (13), 6495–6510 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    G. Curci, M. Beekmann, R. Vautard, G. Smiatek, R. Steinbrecher, J. Theloke, and R. Friedrich, “Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels,” Atmos. Environ. 43 (7), 1444–1455 (2009).

    ADS  Article  Google Scholar 

  47. 47.

    A. Monteiro, A. Strunk, A. Carvalho, O. Tchepel, A. I. Miranda, C. Borrego, S. Saavedra, A. Rodriguez, J. Souto, J. Casares, E. Friese, and H. Elbern, “Investigating a high ozone episode in a rural mountain site,” Environ. Pollut. 162 (1–4), 176–189 (2012).

    Article  Google Scholar 

  48. 48.

    P. Cristofanelli, H.-E. Scheel, M. Steinbacher, M. Saliba, F. Azzopardi, R. Ellul, M. Frohlich, L. Tositti, E. Brattich, M. Maione, F. Calzolari, R. Duchi, T. C. Landi, A. Marinoni, and P. Bonasoni, “Long-term surface ozone variability at Mt. Cimone WMO/GAW Global Station (2165 m a.s.l., Italy),” Atmos. Environ. 101, 23–33 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    M. Vieno, A. J. Dore, D. S. Stevenson, R. Doherty, M. R. Heal, S. Reis, S. Hallsworth, L. Tarrason, P.Wind, D. Fowler, D. Simpson, and M. A. Sutton, “Modelling surface ozone during the 2003 heat-wave in the UK,” Atmos. Chem. Phys. 10 (16), 7963–7978 (2010).

    ADS  Article  Google Scholar 

  50. 50.

    B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Temperature dependence of the ozone formation in the surface air layer,” in Abstracts of XXII Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2015), p. 17 [in Russian].

    Google Scholar 

  51. 51.

    M. Yu. Arshinov, B. D. Belan, V. V. Zuev, V. E. Zuev, V. K. Kovalevskii, A. V. Ligotskii, V. E. Meleshkin, M.V. Panchenko, E. V. Pokrovskii, A. N. Rogov, D. V. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Ocean. Opt. 7 (8), 580–584 (1994).

    Google Scholar 

  52. 52.

    B. D. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Results of ten-year monitoring of surface ozone near Tomsk,” Atmos. Ocean. Opt. 13 (9), 766–772 (2000).

    Google Scholar 

  53. 53.

    M. Yu. Arshinov, B. D. Belan, V. B. Zuev, O. A. Krasnov, V. A. Pirogov, T. K. Sklyadneva, and G. N. Tolmachev, “Long-term variability of tropospheric ozone in Tomsk as a reflection of solar activity,” Atmos. Ocean. Opt. 15 (11), 896–901 (2002).

    Google Scholar 

  54. 54.

    V. G. Arshinova, B. D. Belan, T. M. Rasskazchikova, A. N. Rogov, and G. N. Tolmachev, “Variation of the ozone concentration in the ground atmospheric layer by the passage of atmospheric fronts,” Atmos. Ocean. Opt. 8 (4), 326–328 (1995).

    Google Scholar 

  55. 55.

    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Long-term variability of ozone and aerosol concentrations in the atmosphere surface layer and forecasting its changes from the solar activity level predicted in cycle 24,” Sol.-Zemnaya Fiz., No. 21 (134), 46–50 (2012).

    Google Scholar 

  56. 56.

    B.D. Belan, Tropospheric Ozone (Publishing House IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  57. 57.

    B. D. Belan and T. K. Sklyadneva, “Tropospheric ozone. 4. Photochemical formation of tropospheric ozone: the role of solar radiation,” Atmos. Ocean. Opt. 21 (10), 746–754 (2008).

    Google Scholar 

  58. 58.

    B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Longterm monitoring of total and UV-B radiation in Tomsk,” Atmos. Oceanic Opt. 25 (4), 281–285 (2012).

    Article  Google Scholar 

  59. 59.

    B. D. Belan, V. V. Zuev, T. K. Sklyadneva, S. V. Smirnov, and G. N. Tolmachev, “On the role of total ozone in photochemical production of its tropospheric fraction,” Atmos. Ocean. Opt. 13 (10), 860–864 (2000).

    Google Scholar 

  60. 60.

    P. N. Antokhin and B. D. Belan, “Control of the dynamics of tropospheric ozone through the stratosphere,” Atmos. Ocean. Opt. 26 (3), 207–213 (2013).

    Article  Google Scholar 

  61. 61.

    B. D. Belan, “Tropospheric ozone. 3. Mechanism and factors determining the ozone content in troposphere,” Atmos. Ocean. Opt. 21 (7), 520–534 (2008).

    Google Scholar 

  62. 62.

    D. Bauer, L. D’Ottone, and A. J. Hynes, “O1D quantum yields from photolysis in the near UV region O3 between 305 and 375 nm,” Phys. Chem. Chem. Phys. 2, 1421–1424 (2000).

    Article  Google Scholar 

  63. 63.

    N. Benas, E. Mourtzanou, G. Kouvarakis, A. Bais, N. Mihalopoulos, and I. Vardavas, “Surface ozone photolysis rate trends in the Eastern Mediterranean: Modeling the effects of aerosols and total column ozone based on Terra MODIS data,” Atmos. Environ. 74, 1–9 (2013).

    ADS  Article  Google Scholar 

  64. 64.

    Y. Matsumi, F. J. Comes, G. Hancock, A. Hofzumahaus, A. J. Hynes, M. Kawasaki, and A. R. Ravishankara, “Quantum yields for production of O(1D) in the ultraviolet photolysis of ozone: Recommendation based on evaluation of laboratory data,” J. Geophys. Res. D 107 (3), 4024 (2002). doi 10.1029/2001JD000510

    ADS  Article  Google Scholar 

  65. 65.

    B. D. Belan, “Tropospheric ozone. 7. Sinks of ozone in troposphere,” Opt. Atmos. Okeana 23 (2), 108–127 (2010).

    Google Scholar 

  66. 66.

    B. D. Belan, “Tropospheric ozone. 5. Gases as ozone precursors,” Opt. Atmos. Okeana 22 (3), 230–268 (2009).

    Google Scholar 

  67. 67.

    B. D. Belan, “Tropospheric ozone. 6. Compounds of ozone cycles,” Opt. Atmos. Okeana 22 (4), 358–379 (2009).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Additional information

Original Russian Text © B.D. Belan, D.E. Savkin, G.N. Tolmachev, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belan, B.D., Savkin, D.E. & Tolmachev, G.N. Air-Temperature Dependence of the Ozone Generation Rate in the Surface Air Layer. Atmos Ocean Opt 31, 187–196 (2018). https://doi.org/10.1134/S1024856018020045

Download citation

Keywords

  • atmosphere
  • dependence
  • air
  • ozone
  • surface air layer
  • temperature