Skip to main content

Localized High-Intensity Light Structures during Multiple Filamentation of Ti:Sapphire-Laser Femtosecond Pulses along an Air Path


The results of experimental studies of the transverse structure of a laser beam after multiple filamentation are presented. A ring structure of radiation is formed around individual filaments in a beam cross section inside the multiple filamentation domain, and at a dozen meters from it a common ring structure starts forming surrounding postfilamentation light channels (PFC). It is shown that the spectra of the PFC, rings, and beam are significantly different. The ring spectrum broadens asymmetrically relative to the carrier wavelength and is mainly concentrated in the short wavelength region. The PFC spectrum has a significant and more symmetrical broadening and covers the range 630–1000 nm.

This is a preview of subscription content, access via your institution.


  1. 1.

    Self-Focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009), p. 3–19.

    Google Scholar 

  2. 2.

    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian]

  3. 3.

    G. Mehain, A. Couairon, Y.-B. Andre, C. D' Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).

    Article  Google Scholar 

  4. 4.

    Hui Gao, Weiwei Liu, and See Leang Chin, “Post-filamentation multiple light channel formation in air,” Laser Phys. 24, 055301–055308 (2014). doi 10.1088/1054-660X/24/5/055301

    ADS  Article  Google Scholar 

  5. 5.

    J.-F. Daigle, O. Kosareva, N. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime: Laboratory and numerical experiments,” Atmos. Ocean. Opt. 22 (2), 150–157 (2009).

    Article  Google Scholar 

  7. 7.

    D. V. Apeksimov, A. A. Zemlyanov, A. M. Kabanov, and A. N. Stepanov, “Post-filamentation light channels in air,” Atmos. Ocean. Opt. 30 (5), 451–455 (2017).

    Article  Google Scholar 

  8. 8.

    N. G. Ivanov and V. F. Losev, “Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air,” Atmos. Ocean. Opt. 30 (4), 331–336 (2017).

    Article  Google Scholar 

  9. 9.

    Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, D. V. Mokrousova, L. V. Seleznev, and E. S. Sunchugasheva, “Parameters of intense light channels during the postfilamentation stage of ultrashort laser radiation evolution,” Atmos. Ocean. Opt. 30 (3), 217–221 (2017).

    Article  Google Scholar 

  10. 10.

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Postfilamentation channels of terawatt pulses Ti:sapphire-laser in distribution on 150-meter track,” Proc. SPIE 10035, CID: 1003 2M [10035–251] (2016).

    Google Scholar 

  11. 11.

    S. L. Chin, S. Petit, W. Liu, A. Iwasaki, M.-C. Nadeu, V. P. Kandidov, O. G. Kosareva, and K. Yu. Andrianov, “Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air,” Opt. Commun. 210, 329 (2002).

    ADS  Article  Google Scholar 

  12. 12.

    D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).

    Article  Google Scholar 

  13. 13.

    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.

    Google Scholar 

  14. 14.

    Yu. E. Geints, D. V. Apeksimov, and A. V. Afonasenko, RF Certificate of Registration of Computer Program No. 2014616871 (June 7, 2014).

    Google Scholar 

  15. 15.

    N. Akozbek, M. Scalora, C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Communs. 191, 353–362 (2001).

    ADS  Article  Google Scholar 

  16. 16.

    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Phys.-Uspekhi 10, 609–636 (1968).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. V. Apeksimov.

Additional information

Original Russian Text © D.V. Apeksimov, A.A. Zemlyanov, A.N. Iglakova, A.M. Kabanov, O.I. Kuchinskaya, G.G. Matvienko, V.K. Oshlakov, A.V. Petrov, E.B. Sokolova, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apeksimov, D.V., Zemlyanov, A.A., Iglakova, A.N. et al. Localized High-Intensity Light Structures during Multiple Filamentation of Ti:Sapphire-Laser Femtosecond Pulses along an Air Path. Atmos Ocean Opt 31, 107–111 (2018).

Download citation


  • laser radiation
  • femtosecond pulse
  • self-focusing
  • filamentation
  • postfilamentation light channels
  • air