Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 2, pp 107–111 | Cite as

Localized High-Intensity Light Structures during Multiple Filamentation of Ti:Sapphire-Laser Femtosecond Pulses along an Air Path

  • D. V. Apeksimov
  • A. A. Zemlyanov
  • A. N. Iglakova
  • A. M. Kabanov
  • O. I. Kuchinskaya
  • G. G. Matvienko
  • V. K. Oshlakov
  • A. V. Petrov
  • E. B. Sokolova
Optical Waves Propagation
  • 18 Downloads

Abstract

The results of experimental studies of the transverse structure of a laser beam after multiple filamentation are presented. A ring structure of radiation is formed around individual filaments in a beam cross section inside the multiple filamentation domain, and at a dozen meters from it a common ring structure starts forming surrounding postfilamentation light channels (PFC). It is shown that the spectra of the PFC, rings, and beam are significantly different. The ring spectrum broadens asymmetrically relative to the carrier wavelength and is mainly concentrated in the short wavelength region. The PFC spectrum has a significant and more symmetrical broadening and covers the range 630–1000 nm.

Keywords

laser radiation femtosecond pulse self-focusing filamentation postfilamentation light channels air 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Self-Focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009), p. 3–19.Google Scholar
  2. 2.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian]Google Scholar
  3. 3.
    G. Mehain, A. Couairon, Y.-B. Andre, C. D' Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004).CrossRefGoogle Scholar
  4. 4.
    Hui Gao, Weiwei Liu, and See Leang Chin, “Post-filamentation multiple light channel formation in air,” Laser Phys. 24, 055301–055308 (2014). doi 10.1088/1054-660X/24/5/055301ADSCrossRefGoogle Scholar
  5. 5.
    J.-F. Daigle, O. Kosareva, N. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime: Laboratory and numerical experiments,” Atmos. Ocean. Opt. 22 (2), 150–157 (2009).CrossRefGoogle Scholar
  7. 7.
    D. V. Apeksimov, A. A. Zemlyanov, A. M. Kabanov, and A. N. Stepanov, “Post-filamentation light channels in air,” Atmos. Ocean. Opt. 30 (5), 451–455 (2017).CrossRefGoogle Scholar
  8. 8.
    N. G. Ivanov and V. F. Losev, “Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air,” Atmos. Ocean. Opt. 30 (4), 331–336 (2017).CrossRefGoogle Scholar
  9. 9.
    Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, D. V. Mokrousova, L. V. Seleznev, and E. S. Sunchugasheva, “Parameters of intense light channels during the postfilamentation stage of ultrashort laser radiation evolution,” Atmos. Ocean. Opt. 30 (3), 217–221 (2017).CrossRefGoogle Scholar
  10. 10.
    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Postfilamentation channels of terawatt pulses Ti:sapphire-laser in distribution on 150-meter track,” Proc. SPIE 10035, CID: 1003 2M [10035–251] (2016).Google Scholar
  11. 11.
    S. L. Chin, S. Petit, W. Liu, A. Iwasaki, M.-C. Nadeu, V. P. Kandidov, O. G. Kosareva, and K. Yu. Andrianov, “Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air,” Opt. Commun. 210, 329 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).CrossRefGoogle Scholar
  13. 13.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.Google Scholar
  14. 14.
    Yu. E. Geints, D. V. Apeksimov, and A. V. Afonasenko, RF Certificate of Registration of Computer Program No. 2014616871 (June 7, 2014).Google Scholar
  15. 15.
    N. Akozbek, M. Scalora, C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Communs. 191, 353–362 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Phys.-Uspekhi 10, 609–636 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Apeksimov
    • 1
  • A. A. Zemlyanov
    • 1
  • A. N. Iglakova
    • 1
  • A. M. Kabanov
    • 1
  • O. I. Kuchinskaya
    • 1
    • 2
  • G. G. Matvienko
    • 1
    • 2
  • V. K. Oshlakov
    • 1
  • A. V. Petrov
    • 1
  • E. B. Sokolova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations