Skip to main content

Variations of Residual CO2 and Pressure in Conifer Woody Roots

Abstract

In continuation of works on the determination of cyclic tree-stem CO2 efflux, vacuum-extracted gas samples of large woody roots of Siberian stone pine and Scots pine are studied. Laser photoacoustic gas analysis was used to obtain chronologies of CO2 and total pressure of gas components in root rings. Spectral and cross-spectral analyses reveal the cyclic character of variations in the chronologies. Such a behavior of the total pressure and CO2 content in large roots can testify to possible cyclic diffusion of CO2 from the roots into soil and then into the atmosphere, which can be considered as a new feature of autotroph respiration. An attempt is made to analyze results of some previous work on a similar subject based on cyclic CO2 efflux from large roots.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Knutti and J. Rogelj, “The legacy of our CO2 emissions: A clash of scientific facts, politics and ethics,” Clim. Chang. 133 (3), 361–373 (2015).

    Article  Google Scholar 

  2. 2.

    C. McKinnon, “Climate justice in a carbon budget,” Clim. Chang. 133 (3), 375–384 (2015).

    Article  Google Scholar 

  3. 3.

    www.cbo.gov/sites/default/files/110th-congress-2007-2008/reports/09-12-carbonsequestration.pdf (last access: 17.07.2017).

  4. 4.

    A. M. Tarko, Can We Decelerate the Global Warming? Russia in the Environment (MNEPU, Moscow, 2008) [ in Russian].

    Google Scholar 

  5. 5.

    S. E. Trumbore, A. Angert, N. Kunert, J. Muhr, and J. Q. Chambers, “What’s the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes,” New Phytol. 197 (2), 353–355 (2013).

    Article  Google Scholar 

  6. 6.

    Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38 (3), 425–448 (2006).

    Article  Google Scholar 

  7. 7.

    O. V. Trefilova, “Intensity of the heterotrophic respiration in pine forests of middle taiga: Comparative analysis of estimation techniques,” Khvoinye Boreal’noi Zony 24 (4–5), 467–473 (2007).

    Google Scholar 

  8. 8.

    B. Rewald, A. Rechenmacher, and D. L. Godbold, “It’s complicated: Intraroot system variability of respiration and morphological traits in four deciduous tree species,” Plant Phys. 166 (2), 736–745 (2014).

    Article  Google Scholar 

  9. 9.

    J. W. Raich and W. H. Schlesinger, “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate,” Tellus, B 44 (2), 81–99 (1992).

    ADS  Article  Google Scholar 

  10. 10.

    J. Bloemen, M. A. McGuire, D. P. Aubre, R. O. Teskey, K. Steppe, “Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees,” New Phytol. 197 (2), 555–565 (2013).

    Article  Google Scholar 

  11. 11.

    S. Hashimoto, N. Carvalhais, A. Ito, M. Migliavacca, K. Nishina, and M. Reichstein, “Global spatiotemporal distribution of soil respiration modeled using a global database,” Biogeosciences 12, 4121–4132 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    S. G. Pallardy, Physiology of Woody Plants (Elsevier Academic Press, New York, 2008).

    Google Scholar 

  13. 13.

    S. D. Day, P. E. Wiseman, S. B. Dickinson, and J. R. Harris, “Contemporary concepts of root system architecture of urban trees,” Arboric. Urban For. 36 (4), 149–159 (2010).

    Google Scholar 

  14. 14.

    L. V. Zarubina, V. N. Konovalov, P. A. Feklistov, and D. N. Klevtsov, “Dynamics of root respiration in pine and spruce trees of northern taiga plant communities,” Arctic Environ. Res., No. 2, 52–59 (2014).

    Google Scholar 

  15. 15.

    A. I. Matvienko, M. I. Makarova, and O. V. Menyailo, “Biological sources of soil SO2 under Siberian larch and Scotch pine,” Ekologiya, No. 3, 182–188 (2014).

    Google Scholar 

  16. 16.

    K. S. Pregitzer, “Woody plants, carbon allocation and fine roots,” New Phytol. 158 (3), 419–430 (2003).

    Article  Google Scholar 

  17. 17.

    M. Bader, E. Hiltbrunner, and C. Korner, “Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE),” Funct. Ecol. 23 (5), 913–921 (2009).

    Article  Google Scholar 

  18. 18.

    M. G. Romanovskii, Yu. A. Gopius, V. V. Mamaev, and R. V. Shchekalev, Autotrophic Respiration of Foreststeppe Oaks (IPP Pravda Severa, Arkhangelsk, 2008) [in Russian].

    Google Scholar 

  19. 19.

    Y. Hirano, M. Dannoura, K. Aono, T. Igarashi, M. Ishii, K. Yamase, N. Makita, and Y. Kanazawa, “Limiting factors in the detection of tree roots using ground-penetrating radar,” Plant Soil. 319 (1–2), 15–24 (2009).

    Article  Google Scholar 

  20. 20.

    J. Bloemen, R. O. Teskey, M. A. McGuire, D. P. Aubrey, and K. Steppe, “Root xylem CO2 flux: An important but unaccounted—for component of root respiration,” Trees. 30 (2), 343–352 (2016).

    Article  Google Scholar 

  21. 21.

    B. G. Ageev, A. N. Gruzdev, and V. A. Sapozhnikova, “Variations in gas components and total pressure in stem and root disc wood of conifer species,” Atmos. Ocean. Opt. 30 (2), 209–215 (2017).

    Article  Google Scholar 

  22. 22.

    B. Ageev, Yu. Ponomarev, V. Sapozhnikova, and D. Savchuk, A laser photoacoustic analysis of residual CO2 and H2O in larch stems,” Biosensors. 5 (1), 1–12 (2015).

    Article  Google Scholar 

  23. 23.

    V. A. Sapozhnikova, A. N. Gruzdev, B. G. Ageev, Yu. N. Ponomarev, and D. A. Savchuk, “Relationship between CO2 and H2O variations in tree rings of siberian stone pine and meteorological parameters,” Dokl. Earth Sci. 450 (2), 652–657 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv. Atmos. Ocean. Phys. 50 (6), 576–582 (2014).

    Article  Google Scholar 

  25. 25.

    E. M. Galimov, Nature of Biological Fractioning of Isotopes (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. 26.

    M. Rubino, D. Etheridge, C. Trudinger, and R. Francey, “A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica,” J. Geophys. Res. 118 (15), 8482–8499 (2013).

    Google Scholar 

  27. 27.

    S. M. Kay and S. L. Marple, “Spectral analysis—a modern perspective,” Proc. IEEE 69 (11), 1380–1419 (1981).

    ADS  Article  Google Scholar 

  28. 28.

    R. H. Jones, Multivariate Autoregression Estimation Using Residuals (Academic Press, New York, 1978).

    Book  MATH  Google Scholar 

  29. 29.

    A. N. Gruzdev, H. Schmidt, and G. P. Brasseur, “The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a threedimensional chemistry-climate model,” Atmos. Chem. Phys., No. 9, 595–614 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    A. N. Gruzdev and V. A. Bezverkhny, “Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind,” J. Geophys. Res., D 105 (24), 29435–29443 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    B. Bond-Lamberty and A. Thomson, “Temperatureassociated increases in the global soil respiration record,” Nature 464 (7288), 579–582 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    B. Bostr-m, D. Comstedt, and A. Ekblad, “Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter,” Oecologia 153 (1), P. 89–98 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    L. S. Savel’eva, Wood Root-Grafting (Lesnaya promyshlennost', Moscow, 1969) [in Russian].

    Google Scholar 

  34. 34.

    T. Klein, R. T. W. Siegwolf, and C. K-rner, “Belowground carbon trade among tall trees in a temperate forest,” Science 352 (6283), 342–344 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    P. D. Kramer and T. T. Kozlovskii, Wood Physiology (Lesnaya promyshlennost', Moscow, 1983) [in Russian].

    Google Scholar 

  36. 36.

    S. Lev-Yadun and D. Sprugel, “Why should trees have natural root grafts?” Tree Physiol. 31 (6), 575–578 (2011).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. G. Ageev.

Additional information

Original Russian Text © B.G. Ageev, A.N. Gruzgev, Yu.N. Ponomarev, V.A. Sapozhnikova, 2017, published in Optika Atmosfery i Okeana.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ageev, B.G., Gruzgev, A.N., Ponomarev, Y.N. et al. Variations of Residual CO2 and Pressure in Conifer Woody Roots. Atmos Ocean Opt 31, 146–152 (2018). https://doi.org/10.1134/S1024856018020021

Download citation

Keywords

  • CO2
  • total pressure
  • woody roots
  • cyclicity