Skip to main content

Model Estimates of Dynamics of the Vertical Structure of Solar Absorption and Temperature Effects under Background Conditions and in Extremely Smoke-Laden Atmosphere According to Data of Aircraft Observations

Abstract

We present the quantitative estimates of the vertical distribution of absorbed solar radiation and temperature effects in the background and extremely smoke-laden troposphere of Siberia, obtained using empirical data and numerical simulation. Vertical profiles of the aerosol characteristics are created based on an empirical model, relying on aircraft sensing of angular scattering coefficients and the content of absorbing particles at different altitudes. It is shown that, under the smoke-haze conditions, the radiation effect of aerosol particles with high black carbon content on the diurnal influx of solar radiation in the central part of the smoke layer exceeds 50%. The change in air temperature due to the absorption of solar radiation during the daylight hours is approximately 2.5–5.5 K when the optical depth of the smoke aerosol varies in the range 2 ≤ τsmoke(0.55 μm) ≤ 4.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res., D 102 (6), 6831–6864 (1997).

    ADS  Article  Google Scholar 

  2. 2.

    A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science 288, 1042–1047 (2000).

    ADS  Article  Google Scholar 

  3. 3.

    V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nat. Geosci. 1, 221–227 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system? A scientific assessment,” J. Geophys. Res. 118 (11), 5380–5552 (2013).

    Google Scholar 

  5. 5.

    S. N. Tripathi, A. K. Srivastava, S. Dey, S. K. Satheesh, and K. Krishnamoorthy, “The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in Northern India,” Atmos. Environ. 41 (32), 6909–6915 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    S. Ramachandran and S. Kedia, “Black carbon aerosols over an urban region: Radiative forcing and climate impact,” J. Geophys. Res. 115, D10202 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    P. D. Safai, M. P. Raju, R. S. Maheshkumar, J. R. Kulkarni, P. S. P. Rao, and P. C. S. Devara, “Vertical profiles of black carbon aerosols over the urban locations in South India,” Sci. Total Environ. 431, 323–331 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    M. V. Ramana, V. Ramanathan, Y. Feng, S.-C. Yoon, S.-W. Kim, G. R. Carmichael, and J. J. Schauer, “Warming influenced by the ratio of black carbon to sulphate and the black-carbon source,” Nat. Geosci. 3, 542–545 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    J. P. Schwarz, H. Stark, J. R. Spackman, T. B. Ryerson, J. Peischl, W. H. Swartz, R. S. Gao, L. A. Watts, and D. W. Fahey, “Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city,” Geophys. Res. Lett. 36, L15807 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    A. Davidi, I. Koren, and L. Remer, “Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile,” Atmos. Chem. Phys. 9 (21), 8211–8221 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    R. S. Stone, G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E. G. Dutton, C. Schaaf, and M. Roman, III, “Radiative impact of boreal smoke in the Arctic: Observed and modeled,” J. Geophys. Res. 113, 16 (2008).

    Article  Google Scholar 

  12. 12.

    C. E. Corrigan, G. C. Roberts, M. V. Ramana, D. Kim, and V. Ramanathan, “Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles,” Atmos. Chem. Phys. 8 (3), 737–747 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133, 1913–1931 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    B. I. Magi, PhD Thesis (Univ. of Washington, USA, 2006).

    Google Scholar 

  15. 15.

    M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of the optical characteristics of tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  16. 16.

    M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  17. 17.

    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,’ Rus. Meteorol. Hydrol. 41 (2) 104–111 (2016).

    Article  Google Scholar 

  18. 18.

    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10 (1), 179–198 (2017).

    Article  Google Scholar 

  19. 19.

    M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).

    ADS  Article  Google Scholar 

  20. 20.

    A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben, “AERONET-based models of smokedominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth,” Atmos. Chem. Phys. 14 (20), 11493–11523 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    O. T. Dubovik and M. King, “A flexible inversion algorithm for retrieval aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., D 105 (16), 20673–20696 (2000).

    ADS  Article  Google Scholar 

  22. 22.

    T. B. Zhuravleva, A. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters,” Atmos. Ocean. Opt. 22 (1), 63–73 (2009).

    Article  Google Scholar 

  23. 23.

    T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V. Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberia,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).

    Article  Google Scholar 

  24. 24.

    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Papers No. 954 (Air Force Geophysics Laboratory, 1986).

    Google Scholar 

  25. 25.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inouye, Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data,” Atmos. Ocean. Opt. 22 (3), 316–324 (2009).

    Article  Google Scholar 

  26. 26.

    Ku-Nan Liou, Key Radiative Processes in the Atmosphere (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. B. Zhuravleva.

Additional information

Original Russian Text © T.B. Zhuravleva, M.V. Panchenko, V.S. Kozlov, I.M. Nasrtdinov, V.V. Pol’kin, S.A. Terpugova, D.G. Chernov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, T.B., Panchenko, M.V., Kozlov, V.S. et al. Model Estimates of Dynamics of the Vertical Structure of Solar Absorption and Temperature Effects under Background Conditions and in Extremely Smoke-Laden Atmosphere According to Data of Aircraft Observations. Atmos Ocean Opt 31, 25–30 (2018). https://doi.org/10.1134/S1024856018010153

Download citation

Keywords

  • aerosol empirical model
  • background conditions
  • smoke haze
  • numerical simulation
  • daily absorption of solar radiation
  • temperature effects