Abstract
We present the quantitative estimates of the vertical distribution of absorbed solar radiation and temperature effects in the background and extremely smoke-laden troposphere of Siberia, obtained using empirical data and numerical simulation. Vertical profiles of the aerosol characteristics are created based on an empirical model, relying on aircraft sensing of angular scattering coefficients and the content of absorbing particles at different altitudes. It is shown that, under the smoke-haze conditions, the radiation effect of aerosol particles with high black carbon content on the diurnal influx of solar radiation in the central part of the smoke layer exceeds 50%. The change in air temperature due to the absorption of solar radiation during the daylight hours is approximately 2.5–5.5 K when the optical depth of the smoke aerosol varies in the range 2 ≤ τsmoke(0.55 μm) ≤ 4.
Similar content being viewed by others
References
J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res., D 102 (6), 6831–6864 (1997).
A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science 288, 1042–1047 (2000).
V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nat. Geosci. 1, 221–227 (2008).
T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system? A scientific assessment,” J. Geophys. Res. 118 (11), 5380–5552 (2013).
S. N. Tripathi, A. K. Srivastava, S. Dey, S. K. Satheesh, and K. Krishnamoorthy, “The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in Northern India,” Atmos. Environ. 41 (32), 6909–6915 (2007).
S. Ramachandran and S. Kedia, “Black carbon aerosols over an urban region: Radiative forcing and climate impact,” J. Geophys. Res. 115, D10202 (2010).
P. D. Safai, M. P. Raju, R. S. Maheshkumar, J. R. Kulkarni, P. S. P. Rao, and P. C. S. Devara, “Vertical profiles of black carbon aerosols over the urban locations in South India,” Sci. Total Environ. 431, 323–331 (2012).
M. V. Ramana, V. Ramanathan, Y. Feng, S.-C. Yoon, S.-W. Kim, G. R. Carmichael, and J. J. Schauer, “Warming influenced by the ratio of black carbon to sulphate and the black-carbon source,” Nat. Geosci. 3, 542–545 (2010).
J. P. Schwarz, H. Stark, J. R. Spackman, T. B. Ryerson, J. Peischl, W. H. Swartz, R. S. Gao, L. A. Watts, and D. W. Fahey, “Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city,” Geophys. Res. Lett. 36, L15807 (2009).
A. Davidi, I. Koren, and L. Remer, “Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile,” Atmos. Chem. Phys. 9 (21), 8211–8221 (2009).
R. S. Stone, G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E. G. Dutton, C. Schaaf, and M. Roman, III, “Radiative impact of boreal smoke in the Arctic: Observed and modeled,” J. Geophys. Res. 113, 16 (2008).
C. E. Corrigan, G. C. Roberts, M. V. Ramana, D. Kim, and V. Ramanathan, “Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles,” Atmos. Chem. Phys. 8 (3), 737–747 (2008).
M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133, 1913–1931 (2007).
B. I. Magi, PhD Thesis (Univ. of Washington, USA, 2006).
M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of the optical characteristics of tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).
M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).
M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,’ Rus. Meteorol. Hydrol. 41 (2) 104–111 (2016).
T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10 (1), 179–198 (2017).
M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).
A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben, “AERONET-based models of smokedominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth,” Atmos. Chem. Phys. 14 (20), 11493–11523 (2014).
O. T. Dubovik and M. King, “A flexible inversion algorithm for retrieval aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., D 105 (16), 20673–20696 (2000).
T. B. Zhuravleva, A. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters,” Atmos. Ocean. Opt. 22 (1), 63–73 (2009).
T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V. Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberia,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).
G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Papers No. 954 (Air Force Geophysics Laboratory, 1986).
M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inouye, Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data,” Atmos. Ocean. Opt. 22 (3), 316–324 (2009).
Ku-Nan Liou, Key Radiative Processes in the Atmosphere (Gidrometeoizdat, Leningrad, 1984) [in Russian].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © T.B. Zhuravleva, M.V. Panchenko, V.S. Kozlov, I.M. Nasrtdinov, V.V. Pol’kin, S.A. Terpugova, D.G. Chernov, 2017, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Zhuravleva, T.B., Panchenko, M.V., Kozlov, V.S. et al. Model Estimates of Dynamics of the Vertical Structure of Solar Absorption and Temperature Effects under Background Conditions and in Extremely Smoke-Laden Atmosphere According to Data of Aircraft Observations. Atmos Ocean Opt 31, 25–30 (2018). https://doi.org/10.1134/S1024856018010153
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856018010153