Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 25–30 | Cite as

Model Estimates of Dynamics of the Vertical Structure of Solar Absorption and Temperature Effects under Background Conditions and in Extremely Smoke-Laden Atmosphere According to Data of Aircraft Observations

  • T. B. ZhuravlevaEmail author
  • M. V. Panchenko
  • V. S. Kozlov
  • I. M. Nasrtdinov
  • V. V. Pol’kin
  • S. A. Terpugova
  • D. G. Chernov
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

We present the quantitative estimates of the vertical distribution of absorbed solar radiation and temperature effects in the background and extremely smoke-laden troposphere of Siberia, obtained using empirical data and numerical simulation. Vertical profiles of the aerosol characteristics are created based on an empirical model, relying on aircraft sensing of angular scattering coefficients and the content of absorbing particles at different altitudes. It is shown that, under the smoke-haze conditions, the radiation effect of aerosol particles with high black carbon content on the diurnal influx of solar radiation in the central part of the smoke layer exceeds 50%. The change in air temperature due to the absorption of solar radiation during the daylight hours is approximately 2.5–5.5 K when the optical depth of the smoke aerosol varies in the range 2 ≤ τsmoke(0.55 μm) ≤ 4.

Keywords

aerosol empirical model background conditions smoke haze numerical simulation daily absorption of solar radiation temperature effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res., D 102 (6), 6831–6864 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science 288, 1042–1047 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nat. Geosci. 1, 221–227 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system? A scientific assessment,” J. Geophys. Res. 118 (11), 5380–5552 (2013).Google Scholar
  5. 5.
    S. N. Tripathi, A. K. Srivastava, S. Dey, S. K. Satheesh, and K. Krishnamoorthy, “The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in Northern India,” Atmos. Environ. 41 (32), 6909–6915 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    S. Ramachandran and S. Kedia, “Black carbon aerosols over an urban region: Radiative forcing and climate impact,” J. Geophys. Res. 115, D10202 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    P. D. Safai, M. P. Raju, R. S. Maheshkumar, J. R. Kulkarni, P. S. P. Rao, and P. C. S. Devara, “Vertical profiles of black carbon aerosols over the urban locations in South India,” Sci. Total Environ. 431, 323–331 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    M. V. Ramana, V. Ramanathan, Y. Feng, S.-C. Yoon, S.-W. Kim, G. R. Carmichael, and J. J. Schauer, “Warming influenced by the ratio of black carbon to sulphate and the black-carbon source,” Nat. Geosci. 3, 542–545 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Schwarz, H. Stark, J. R. Spackman, T. B. Ryerson, J. Peischl, W. H. Swartz, R. S. Gao, L. A. Watts, and D. W. Fahey, “Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city,” Geophys. Res. Lett. 36, L15807 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. Davidi, I. Koren, and L. Remer, “Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile,” Atmos. Chem. Phys. 9 (21), 8211–8221 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    R. S. Stone, G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E. G. Dutton, C. Schaaf, and M. Roman, III, “Radiative impact of boreal smoke in the Arctic: Observed and modeled,” J. Geophys. Res. 113, 16 (2008).CrossRefGoogle Scholar
  12. 12.
    C. E. Corrigan, G. C. Roberts, M. V. Ramana, D. Kim, and V. Ramanathan, “Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles,” Atmos. Chem. Phys. 8 (3), 737–747 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Ramana, V. Ramanathan, D. Kim, G. C. Roberts, and C. E. Corrigan, “Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs,” Q. J. R. Meteorol. Soc. 133, 1913–1931 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    B. I. Magi, PhD Thesis (Univ. of Washington, USA, 2006).Google Scholar
  15. 15.
    M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of the optical characteristics of tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).Google Scholar
  16. 16.
    M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).CrossRefGoogle Scholar
  17. 17.
    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,’ Rus. Meteorol. Hydrol. 41 (2) 104–111 (2016).CrossRefGoogle Scholar
  18. 18.
    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10 (1), 179–198 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben, “AERONET-based models of smokedominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth,” Atmos. Chem. Phys. 14 (20), 11493–11523 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    O. T. Dubovik and M. King, “A flexible inversion algorithm for retrieval aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., D 105 (16), 20673–20696 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    T. B. Zhuravleva, A. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters,” Atmos. Ocean. Opt. 22 (1), 63–73 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V. Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberia,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).CrossRefGoogle Scholar
  24. 24.
    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Papers No. 954 (Air Force Geophysics Laboratory, 1986).Google Scholar
  25. 25.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inouye, Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data,” Atmos. Ocean. Opt. 22 (3), 316–324 (2009).CrossRefGoogle Scholar
  26. 26.
    Ku-Nan Liou, Key Radiative Processes in the Atmosphere (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. B. Zhuravleva
    • 1
    Email author
  • M. V. Panchenko
    • 1
  • V. S. Kozlov
    • 1
  • I. M. Nasrtdinov
    • 1
  • V. V. Pol’kin
    • 1
  • S. A. Terpugova
    • 1
  • D. G. Chernov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations