Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 19–24 | Cite as

Estimation of Optical Properties of “Soft” Radially Inhomogeneous Ellipsoidal Particles

  • L. E. ParamonovEmail author
Optics of Clusters, Aerosols, and Hydrosoles


The Rayleigh–Gans–Debye and anomalous diffraction approximations are used to formulate necessary and sufficient conditions of optical equivalence of randomly oriented, radially inhomogeneous, optically “soft” ellipsoidal particles and polydisperse radially inhomogeneous spherical particles. Consequences of optical equivalence are used as a base for the optical classification of isotropic ensembles of soft ellipsoidal particles. The correctness of the classification is illustrated by calculations using the T-matrix method and Mie theory.


radially inhomogeneous ellipsoidal particle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Shifrin, Introduction in the Ocean Optics (Gidrometeoizdat, Leningrad, 1983) [inRussian].Google Scholar
  2. 2.
    V. E. Zuev and M. V. Kabanov, Optics of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  3. 3.
    H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York; Champan and Hall, London, 1957).Google Scholar
  4. 4.
    L. E. Paramonov, “Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh–Gans–Debye and anomalous diffraction approximations and its consequences,” Opt. Spectrosc. 112 (5), 842–850 (2012).CrossRefGoogle Scholar
  5. 5.
    P. Latimer, “Light scattering by ellipsoids,” J. Colloid Interface Sci. 53 (1), 102–109 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    L. E. Paramonov and O. V. Sorokina, “Expansion of the phase function of randomly oriented optically “soft” ellipsoidal particles in Legendre polynomials,” Opt. Atmos. Okeana 25 (5), 412–416 (2012).Google Scholar
  7. 7.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  8. 8.
    V. Vouk, “Projected area of convex bodies,” Nature (London) 162 (4113), 330–331 (1948).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    L. E. Paramonov, “T-matrix approach and the angular momentum theory in light scattering problems by ensembles of arbitrarily shaped particles,” J. Opt. Soc. Am., A 12 (12), 2698–2707 (1995).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. E. Paramonov, V. A. Schmidt, and G. V. Cherkasova, “Analytical averaging methods for the light diffraction by nonspherical particles,” Vychisl. Technol. 10 (S4), 100–108 (2005).zbMATHGoogle Scholar
  11. 11.
    B. Peterson and S. Ström, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev., D. 10 (8), 2670–2684 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    R. Bhandari, “Scattering coefficients for a multilayered sphere: Analytic expressions and algorithms,” Appl. Opt. 24 (13), 1960–1967 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).Google Scholar
  15. 15.
    L. E. Paramonov, E. B. Khromechek, V. V. Abdulkin, and V. A. Shmidt, “Solving the inverse problems on equivalent classes,” Atmos. Ocean. Opt. 17 (5–6), 453–457 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shirshov Oceanology Institute, Southern BranchRussian Academy of SciencesGelendzhikRussia

Personalised recommendations