Skip to main content

Coherence of Bessel-Gaussian Beams Propagating in a Turbulent Atmosphere

Abstract

Coherent properties of vortex Bessel-Gaussian beams propagating in a turbulent atmosphere are theoretically studied based on the analytical solution of the equation for the transverse second-order mutual coherence function of optical radiation field. The behavior of coherence degree, coherence length, and integral scale of coherence degree of vortex Bessel-Gaussian beams depending on beam parameters and characteristics of the turbulent atmosphere is analyzed. It is shown that the coherence length and integral scale of coherence degree of a vortex Bessel-Gaussian beam essentially depend on the topological charge of the beam. When the topological charge of a vortex beam increases, additional decreases in the above parameters become less. The given effect is small under weak and strong fluctuations of optical radiation, and it is maximal in the transition region between them.

This is a preview of subscription content, access via your institution.

References

  1. W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley Publ. Co., 1977).

    Google Scholar 

  2. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, New York, 2008).

    Google Scholar 

  3. V. P. Aksenov and Ch. E. Pogutsa, “The effect of optical vortex on random Laguerre–Gauss shifts of a laser beam propagating in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (1), 13–17 (2013).

    Article  Google Scholar 

  4. V.A. Banakh and A. V. Falits, “Turbulent broadening of Laguerre-Gaussian beam in the atmosphere,” Opt. Spectrosc. 117 (6), 942–948 (2014).

    ADS  Article  Google Scholar 

  5. A. V. Falits, “The wander and optical scintillation of focused Laguerre–Gaussian beams in turbulent atmosphere,” Opt. Atmos. Okeana 28 (9), 763–771 (2015).

    Google Scholar 

  6. V. A. Banakh and L. O. Gerasimova, “Diffraction of short-pulse Laguerre–Gaussian beams,” Atmos. Ocean. Opt. 29 (5), 441–446 (2016).

    Article  Google Scholar 

  7. D. A. Marakasov and D. S. Rychkov, “Estimate of the change in the effective beam width by the streamline method for axisymmetric laser beams in a turbulent atmosphere,” Atmos. Ocean. Opt. 29 (5), 447–451 (2016).

    Article  Google Scholar 

  8. V. A. Banakh, L. O. Gerasimova, and A. V. Falits, “Statistics of pulsed Laguerre–Gaussian beams in the turbulent atmosphere,” Opt. Atmos. Okeana 29 (5), 369–376 (2016).

    Google Scholar 

  9. Ch. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel–Gauss vortex beams,” J. Opt. Soc. Am., A 32 (7), 1313–1316 (2015).

    ADS  Article  Google Scholar 

  10. P. Birch, I. Ituen, R. Young, and Ch. Chatwin, “Longdistance Bessel beam propagation through Kolmogorov turbulence,” J. Opt. Soc. Am., A 32 (11), 2066–2073 (2015).

    ADS  Article  Google Scholar 

  11. M. Cheng, L. Guo, J. Li, and Q. Huang, “Propagation properties of an optical vortex carried by a Bessel–Gaussian beam in anisotropic turbulence,” J. Opt. Soc. Am., A 33 (8), 1442–1450 (2016).

    ADS  Article  Google Scholar 

  12. Sh. Chen, Sh. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, J. Wang, “Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation,” Opt. Lett. 41 (20), 4680–4683 (2016).

    ADS  Article  Google Scholar 

  13. Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55 (32), 9211–9216 (2016).

    ADS  Article  Google Scholar 

  14. T. Doster and A. T. Watnik, “Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence, Analysis of channel efficiency,” Appl. Opt. 55 (36), 10239–10246 (2016).

    ADS  Article  Google Scholar 

  15. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.

    Google Scholar 

  16. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007).

    MATH  Google Scholar 

  17. G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).

    Article  Google Scholar 

  18. G. V. Bogatyryova, Ch. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28 (11), 878–880 (2003).

    ADS  Article  Google Scholar 

  19. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222 (1-6), 117–125 (2003).

    ADS  Article  Google Scholar 

  20. G. Gbur, T. D. Visser, and E. Wolf, “Hidden” singularities in partially coherent wavefields,” J. Opt. A, Pure Appl. Opt. 6 (5), 239–S242 (2004).

    ADS  Article  Google Scholar 

  21. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: Theory,” J. Opt. Soc. Am. 21 (11), 1895–1900.

  22. Ch. Ding, L. Pan, and B. Lu, “Phase singularities and spectral changes of spectrally partially coherent higherorder Bessel–Gauss pulsed beams,” J. Opt. Soc. Am., A 26 (12), 2654–2661 (2009).

    ADS  Article  Google Scholar 

  23. H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Amer., A 24 (9), 2891–2901 (2007).

    ADS  Article  Google Scholar 

  24. R. Martinez-Herrero and A. Manjavacas, “Overall second-order parametric characterization of light beams propagating through spiral phase elements,” Opt. Commun. 282 (4), 473–477 (2009).

    ADS  Article  Google Scholar 

  25. R. Borghi, M. Santarsiero, and F. Gori, “Axial intensity of apertured Bessel beams,” J. Opt. Soc. Am., A 14 (1), 23–26 (1997).

    ADS  Article  Google Scholar 

  26. B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40 (6), 820–827 (2008).

    ADS  Article  Google Scholar 

  27. K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16 (26), 21315–21320 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lukin.

Additional information

Original Russian Text © I.P. Lukin, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukin, I.P. Coherence of Bessel-Gaussian Beams Propagating in a Turbulent Atmosphere. Atmos Ocean Opt 31, 49–59 (2018). https://doi.org/10.1134/S1024856018010098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018010098

Keywords

  • Bessel beam
  • vortex beam
  • optical radiation
  • atmospheric turbulence
  • coherence
  • coherence length
  • integral scale of coherence degree