Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 49–59 | Cite as

Coherence of Bessel-Gaussian Beams Propagating in a Turbulent Atmosphere

  • I. P. LukinEmail author
Optical Instrumentation


Coherent properties of vortex Bessel-Gaussian beams propagating in a turbulent atmosphere are theoretically studied based on the analytical solution of the equation for the transverse second-order mutual coherence function of optical radiation field. The behavior of coherence degree, coherence length, and integral scale of coherence degree of vortex Bessel-Gaussian beams depending on beam parameters and characteristics of the turbulent atmosphere is analyzed. It is shown that the coherence length and integral scale of coherence degree of a vortex Bessel-Gaussian beam essentially depend on the topological charge of the beam. When the topological charge of a vortex beam increases, additional decreases in the above parameters become less. The given effect is small under weak and strong fluctuations of optical radiation, and it is maximal in the transition region between them.


Bessel beam vortex beam optical radiation atmospheric turbulence coherence coherence length integral scale of coherence degree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley Publ. Co., 1977).Google Scholar
  2. 2.
    D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, New York, 2008).Google Scholar
  3. 3.
    V. P. Aksenov and Ch. E. Pogutsa, “The effect of optical vortex on random Laguerre–Gauss shifts of a laser beam propagating in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (1), 13–17 (2013).CrossRefGoogle Scholar
  4. 4.
    V.A. Banakh and A. V. Falits, “Turbulent broadening of Laguerre-Gaussian beam in the atmosphere,” Opt. Spectrosc. 117 (6), 942–948 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Falits, “The wander and optical scintillation of focused Laguerre–Gaussian beams in turbulent atmosphere,” Opt. Atmos. Okeana 28 (9), 763–771 (2015).Google Scholar
  6. 6.
    V. A. Banakh and L. O. Gerasimova, “Diffraction of short-pulse Laguerre–Gaussian beams,” Atmos. Ocean. Opt. 29 (5), 441–446 (2016).CrossRefGoogle Scholar
  7. 7.
    D. A. Marakasov and D. S. Rychkov, “Estimate of the change in the effective beam width by the streamline method for axisymmetric laser beams in a turbulent atmosphere,” Atmos. Ocean. Opt. 29 (5), 447–451 (2016).CrossRefGoogle Scholar
  8. 8.
    V. A. Banakh, L. O. Gerasimova, and A. V. Falits, “Statistics of pulsed Laguerre–Gaussian beams in the turbulent atmosphere,” Opt. Atmos. Okeana 29 (5), 369–376 (2016).Google Scholar
  9. 9.
    Ch. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel–Gauss vortex beams,” J. Opt. Soc. Am., A 32 (7), 1313–1316 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    P. Birch, I. Ituen, R. Young, and Ch. Chatwin, “Longdistance Bessel beam propagation through Kolmogorov turbulence,” J. Opt. Soc. Am., A 32 (11), 2066–2073 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. Cheng, L. Guo, J. Li, and Q. Huang, “Propagation properties of an optical vortex carried by a Bessel–Gaussian beam in anisotropic turbulence,” J. Opt. Soc. Am., A 33 (8), 1442–1450 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    Sh. Chen, Sh. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, J. Wang, “Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation,” Opt. Lett. 41 (20), 4680–4683 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55 (32), 9211–9216 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    T. Doster and A. T. Watnik, “Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence, Analysis of channel efficiency,” Appl. Opt. 55 (36), 10239–10246 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970), 4th ed.Google Scholar
  16. 16.
    E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007).zbMATHGoogle Scholar
  17. 17.
    G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).CrossRefGoogle Scholar
  18. 18.
    G. V. Bogatyryova, Ch. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28 (11), 878–880 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222 (1-6), 117–125 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    G. Gbur, T. D. Visser, and E. Wolf, “Hidden” singularities in partially coherent wavefields,” J. Opt. A, Pure Appl. Opt. 6 (5), 239–S242 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: Theory,” J. Opt. Soc. Am. 21 (11), 1895–1900.Google Scholar
  22. 22.
    Ch. Ding, L. Pan, and B. Lu, “Phase singularities and spectral changes of spectrally partially coherent higherorder Bessel–Gauss pulsed beams,” J. Opt. Soc. Am., A 26 (12), 2654–2661 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Amer., A 24 (9), 2891–2901 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    R. Martinez-Herrero and A. Manjavacas, “Overall second-order parametric characterization of light beams propagating through spiral phase elements,” Opt. Commun. 282 (4), 473–477 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    R. Borghi, M. Santarsiero, and F. Gori, “Axial intensity of apertured Bessel beams,” J. Opt. Soc. Am., A 14 (1), 23–26 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40 (6), 820–827 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16 (26), 21315–21320 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations