Skip to main content
Log in

Variations in Condensation Properties of Mixed Smoke from Biomass Burning at Different Smoke Evolution Stages

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


The variations in the optical-microphysical properties of the mixed wood smoke are studied in the Large Aerosol Chamber, Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (volume of 1800 m3) during long-term (6-day) smoke aging under the conditions of periodic impacts of relative air humidity varying in the range 45–95%. Spectral nephelometric measurements of angular scattering and solution of the inverse problem were used to analyze the dynamics of the size distributions and complex refractive indices for ultrafine, medium-sized, and coarse fractions of particles, as well as effective particle radius, lidar scattering parameter, and single scattering albedo in the visible spectral range. It is found that both quantitative and qualitative features of the variations in the aerosol optical-microphysical parameters substantially change at different smoke aging stages as functions of air humidity. It is shown that, during aging of the mixed smoke, the key factors of the variations in smoke properties are the physical-chemical heterogeneity of three fractions of smoke particles, as well as the physical processes of coagulation migration of ultrafine black carbon particles (<100 nm in size) across the size spectrum and the condensational wetting of smoke particles. The interrelated effect (“interference”) of these processes on the particle structure determines the main features of the dynamics of the disperse composition and absorption properties of smoke particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Yu. S. Georgievskii and G.V. Rozenberg, “Humidity as a factor of aerosol variability,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9 (2), 126–137 (1973).

    Google Scholar 

  2. M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29 (9), 2567–2583 (2008).

    Article  ADS  Google Scholar 

  3. M. V. Panchenko, “Relative air humidity and absorption of IR radiation by submicron aerosol,” Opt. Atmos. 1 (4), 25–29 (1988).

    Google Scholar 

  4. G. I. Gorchakov, V. N. Sidorov, and M. A. Sviridenko, “Condensation activity of background aerosol,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18 (9), 997–999 (1982).

    Google Scholar 

  5. B. D. Belan, G. O. Zadde, M. V. Panchenko, T. M. Rasskazchikova, and G. N. Tolmachev, “On the transformation of the particle-size spectrum of an aerosol due to a change in the humidity,” Atmos. Opt. 2 (8), 661–665 (1989).

    Google Scholar 

  6. K. Ya. Kondratyev and V. A. Isidorov, “Global carbon cycle,” Atmos. Ocean. Opt. 14 (2), 77–92 (2001).

    Google Scholar 

  7. K. Ya. Kondratyev and Al. A. Grigoryev, “Forest fires as a component of natural ecodynamics,” Atmos. Ocean. Opt. 17 (4), 279–292 (2004).

    Google Scholar 

  8. A. A. Vinogradova, “Anthropogenic black carbon emissions to the atmosphere: Surface distribution through Russian territory,” Atmos. Ocean. Opt. 28 (2), 158–164 (2015).

    Article  Google Scholar 

  9. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    Article  ADS  Google Scholar 

  10. V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  11. O. A. Tomshin and V.S. Solovyev, “Study of variations in parameters of atmospheric aerosol due to large-scale forest fires in Central Yakutia (2002),” Atmos. Ocean. Opt. 28 (1), 95–99 (2015).

    Article  Google Scholar 

  12. A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).

    Article  Google Scholar 

  13. G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, Optical parameters of atmospheric aerosol. Atmospheric Physics and Climate Problems (Nauka, Moscow, 1980), p. 216–257 [in Russian].

    Google Scholar 

  14. G. V. Rozenberg, “Origination and development of atmospheric aerosol—kinetics caused parameters,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19 (1), 21–35 (1983).

    MathSciNet  Google Scholar 

  15. K. Ya. Kondratyev, “Atmospheric aerosol as a climateforming component of the atmosphere. Part 2. Remote sensing of the global spatiotemporal variability of aerosol and its climate impact,” Atmos. Ocean. Opt. 17 (1), 18–27 (2004).

    Google Scholar 

  16. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res., Atmos. 118 (11), 5380–5552 (2013).

    Article  ADS  Google Scholar 

  17. M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Polkin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  18. R. F. Rakhimov and E. V. Makienko, “Some methodic additions to the solution of the inverse problem for the reconstruction of the parameters of the disperse structure of mixed smokes,” Atmos. Ocean. Opt. 23 (4), 259–267 (2010).

    Article  Google Scholar 

  19. R. F. Rakhimov, E. V. Makienko, and V. P. Shmargunov, “Variations of the optical constants and size spectra of smoke aerosols produced during the thermal decomposition of different types of wooden materials,” Atmos. Ocean. Opt. 23 (5), 364–374 (2010).

    Article  Google Scholar 

  20. R. F. Rakhimov, V. S. Kozlov, and V. P. Shmargunov, “On time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixed-composition smokes,” Atmos. Ocean. Opt. 25 (1), 51–61 (2012).

    Article  Google Scholar 

  21. G. Hanel, “The properties of atmospheric aerosol particles as function of the relative humidity at thermodynamic equilibrium with surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. S. Kozlov.

Additional information

Original Russian Text © V.S. Kozlov, R.F. Rakhimov, V.P. Shmargunov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.S., Rakhimov, R.F. & Shmargunov, V.P. Variations in Condensation Properties of Mixed Smoke from Biomass Burning at Different Smoke Evolution Stages. Atmos Ocean Opt 31, 9–18 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: