Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 86–90 | Cite as

Development of Algorithms for Atmospheric Methane Distribution Retrieval from METOP/IASI Spectra

  • M. Yu. KhamatnurovaEmail author
  • K. G. Gribanov
  • V. I. Zakharov
Optical Instrumentation
  • 23 Downloads

Abstract

The applicability of the Levenberg–Marquardt method, modified for the case of inaccessibility of a priori covariance matrices for methane vertical profiles, to atmospheric methane total column retrieval from the spectra measured by METOP/IASI is studied. The method and algorithm are software implemented together with an iterative evaluation of a posteriori covariance matrices and averaging kernels for each individual case of retrieval. This allows selection of the results based on properties of both matrices. The comparison between our results and IASI standard methane products retrieved from the same spectra shows their satisfactory agreement.

Keywords

satellite atmospheric remote sensing inverse problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ya. Kondrat’ev, “Global climate change: Unsolved problems,” Meteorol. Gidrol., No. 6, 118–128 (2004).Google Scholar
  2. 2.
    S. M. Semenov, Greenhouse Gases and Modern Earth’s Climate (Meteorol. i Gidrol., Moscow, 2004) [in Russian].Google Scholar
  3. 3.
    Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, New York, 2014).Google Scholar
  4. 4.
    WMO Greenhouse Gas Bulletin (2016), No 12, p. 6.Google Scholar
  5. 5.
    M. V. Makarova, N. M. Gavrilov, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison between satellite (GOSAT) and gounf-based Fourier-spectrometer measurements of methane content near St. Petersburg,” Issled. Zemli Kosmosa, No. 6, 50–56 (2013).Google Scholar
  6. 6.
    K. G. Gribanov, R. Imasu, A. Yu. Toptygin, V. Bloiten, A. V. Naumov, and V. I. Zakharov, “Method and results of retrieval of the methane content in the atmosphere of Western Siberia from AIRS data,” Atmos. Ocean. Opt. 20 (10), 805–809 (2007).Google Scholar
  7. 7.
    S. Turquety, J. Hadji-Lazaro, C. Clerbaux, D. A. Hauglustaine, S. A. Clough, V. Casse, P. Schlussel, and G. Megie, “Operational trace gas retrieval algorithm for the infrared atmospheric sounding interferometer,” J. Geophys. Res., D 109 (21) (2004). doi 10.1029/2004JD004821Google Scholar
  8. 8.
    A. B. Uspenskii, A. V. Kukharskii, S. V. Romanov, and A. N. Rublev, “Monitoring of carbon dioxide and the total methane content in the troposphere over Siberia from AIRS and IASI IR sounding data,” Issled. Zemli Kosmosa, No. 1, 14–21 (2011).Google Scholar
  9. 9.
    O. M. Pokrovskii and Yu. M. Timofeev, “General statistical approach to the solution of inverse problems of atmospheric optics,” Meteorol. Gidrol., No. 1, 52–59 (1972).Google Scholar
  10. 10.
    C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys., No. 14, 609 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    T. Steck, “Methods for determining regularization for atmospheric retrieval problems,” Appl. Opt. 41 (9), 1788–1797 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    T. Steck and T. von Clarmann, “Constrained profile retrieval applied to the observation mode of the michelson interferometer for passive atmospheric sounding,” Appl. Opt. 40, 3559–3571 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    S. Ceccherini and M. Ridolfi, “Variance-covariance matrix and averaging kernels for the Levenberg–Marquardt solution of the retrieval of atmospheric vertical profiles,” Atmos. Chem. Phys. 10, 3131–3139 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    S. Noel, K. Bramstedt, M. Hilker, P. Liebing, J. Plieninger, M. Reuter, A. Rozanov, H. Bovensmann, and J. P. Burrows, “Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements,” Atmos. Meas. Tech. Discuss. 8 (11), 11467–11511 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Alexe, P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort, “Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY,” Atmos. Chem. Phys. 15, 113–133 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    C. Frankenberg, U. Platt, and T. Wagner, “Retrieval of CO from SCIAMACHY onboard ENVISAT: Detection of strongly polluted areas and seasonal patterns in global CO abundances,” Atmos. Chem. Phys. 5, 1639–1644 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    N. Eguchi, R. Saito, T. Saeki, Y. Nakatsuka, D. Belikov, and S. Maksyutov, “A priori covariance estimation for CO2 and CH4 retrievals,” J. Geophys. Res., D 115, 10215 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    T. Saeki, R. Saito, D. Belikov, and S. Maksyutov, “Global high-resolution simulations of CO2 and CH4 using a NIES transport model to produce a priori concentrations for use in satellite data retrievals,” Geosci. Model Dev. 6, 81–100 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    C. Ma and L. Jiang, “Some research on Levenberg–Marquardt method for the nonlinear equations,” Appl. Math. Comput. 184, 1032–1040 (2007).MathSciNetzbMATHGoogle Scholar
  20. 20.
    C. Crevoisier, D. Nobileau, A. Fiore, R. Armante, A. Chedin, and N. A. Scott, “Tropospheric methane in the tropics—First year from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9, 6337–6350 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    A. B. Uspenskii and A. N. Rublev, “Current status and prospects of hyperspectral satellite atmospheric sounding,” Issled. Zemli Kosmosa, No. 6, 4–15 (2013).Google Scholar
  22. 22.
    M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nedelec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, and A. J. Weinheimer, “Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008,” Atmos. Chem. Phys. 12, 7371–7389 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nédélec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana 26 (9), 773–782 (2013).Google Scholar
  24. 24.
    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, Ph. Nédélec, J.-D. Paris, and A. V. Fofonov, “Comparison between satellite spectrometric and aircraft measurements of the gas composition in the troposphere over Siberia during forest fires in 2012,” Issled. Zemli Kosmosa, No. 1, 72–84 (2014).Google Scholar
  25. 25.
    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    C. Crevoisier, A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, “First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9, 4797–4810 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    T. August, D. Klaes, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriaga, A. O’Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A operational level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 1340–1371 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Khamatnurova
    • 1
    Email author
  • K. G. Gribanov
    • 1
  • V. I. Zakharov
    • 1
  1. 1.Ural Federal UniversityInstitute of Natural SciencesYekaterinburgRussia

Personalised recommendations