Abstract
The solar radiative fluxes in cloudy and cloudless atmospheres are calculated taking into account multiple scattering and absorption. The cloudy conditions observed in Tomsk and Volgograd regions are considered. A comparison between the fluxes calculated using different models of water vapor continuum absorption, such as the MT_CKD empirical model, commonly used in the atmospheric simulation, and the continuum model based on the CAVIAR experimental data, is carried out. The impact of the water vapor continuum on the shortwave radiative fluxes in the presence of different cloud types is estimated.
Similar content being viewed by others
References
Climate Change 2014. Synthesis Report, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2015).
V. F. Loginov, Radiative Factors and Evidence Base of Modern Climate Changes (Belarus. Nauka, Minsk, 2012) [in Russian].
V. P. Meleshko, G. V. Gruza, A. S. Zaitsev, I. L. Karol’, V. M. Kattsov, N. V. Kobysheva, A. V. Meshcherskaya, V. M. Mirvis, A. I. Reshetnikov, P. V. Sporyshev, E.M. Akent’eva, G. V. Alekseev, O. A. Anisimov, L. N. Aristova, M. Yu. Bardin, E. G. Bogdanova, O. N. Bulygina, V. Yu. Georgievskii, V. A. Govorkova, V. V. Ivanov, B. M. Il’in, L. K. Kleshchenko, M. V. Klyueva, N. K. Kononova, S. P. Malevskii-Malevich, E. L. Makhotkina, V. I. Meleshko, E. D. Nadezhina, T. V. Pavlova, N. N. Paramonova, O. M. Pokrovskii, V. N. Razuvaev, E. Ya. Ran’kova, E. V. Rocheva, T. P. Svetlova, V. V. Stadnik, E. I. Khlebnikova, M. Z. Shaimardanov, A. L. Shalygin, I. A. Shiklomanov, I. M. Shkol’nik, and B. E. Shneerov, Estimation Report about Climate Changes and their Consequences in the Russian Federation. Vol. 1. Climate Changes (Rosgidromet, Moscow, 2008) [in Russian].
G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).
K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205 (2014).
K. M. Firsov, T. Yu. Chesnokova, and I. I. Klitochenko, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).
I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).
I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc. 370, 2557–2577 (2012).
G. Radel, K. P. Shine, and I. V. Ptashnik, “Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths,” Q. J. R. Meteorol. Soc. 141, 727–738 (2015).
T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26 (6), 499–506 (2013).
D. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012).
K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502 (1988).
http://www.esrl.noaa.gov/psd/data/reanalysis/(last access: 20.06.2017).
V. S. Komarov and N. Ya. Lomakina, Statistical Models of the Boundary Air Layer in Western Siberia (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].
MODIS Atmosphere: Monthly Global Product. URL: https://modis-atmos.gsfc.nasa.gov/MOD08_M3/(last access: 6.06.2017).
R. R. De Leon and J. D. Haigh, “Infrared properties of cirrus clouds in climate models,” Q. J. R. Meteorol. Soc. 133, 273–282 (2007).
Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).
F. X. Kneizys, D. C. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shettle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 MODEL, Ed. by L.W. Abreu and G.P. Anderson (Ontar Corporation, North Andover, USA, 1996).
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).
W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-µm atmospheric windows,” J. Dir. Energy 2 (2), 151–161 (2006).
D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by crds at room temperature in the 1.6 µm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).
I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).
K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows— current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).
http://rtweb.aer.com/continuum_frame.html (last access: 17.06.2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © K.M. Firsov, T.Yu. Chesnokova, A.A. Razmolov, A.V. Chentsov, 2017, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Firsov, K.M., Chesnokova, T.Y., Razmolov, A.A. et al. Contribution of the Water Vapor Continuum Absorption to Shortwave Solar Fluxes in the Earth’s Atmosphere with Cirrus Cloudiness. Atmos Ocean Opt 31, 1–8 (2018). https://doi.org/10.1134/S1024856018010062
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856018010062