Skip to main content

Contribution of the Water Vapor Continuum Absorption to Shortwave Solar Fluxes in the Earth’s Atmosphere with Cirrus Cloudiness


The solar radiative fluxes in cloudy and cloudless atmospheres are calculated taking into account multiple scattering and absorption. The cloudy conditions observed in Tomsk and Volgograd regions are considered. A comparison between the fluxes calculated using different models of water vapor continuum absorption, such as the MT_CKD empirical model, commonly used in the atmospheric simulation, and the continuum model based on the CAVIAR experimental data, is carried out. The impact of the water vapor continuum on the shortwave radiative fluxes in the presence of different cloud types is estimated.

This is a preview of subscription content, access via your institution.


  1. 1.

    Climate Change 2014. Synthesis Report, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2015).

  2. 2.

    V. F. Loginov, Radiative Factors and Evidence Base of Modern Climate Changes (Belarus. Nauka, Minsk, 2012) [in Russian].

    Google Scholar 

  3. 3.

    V. P. Meleshko, G. V. Gruza, A. S. Zaitsev, I. L. Karol’, V. M. Kattsov, N. V. Kobysheva, A. V. Meshcherskaya, V. M. Mirvis, A. I. Reshetnikov, P. V. Sporyshev, E.M. Akent’eva, G. V. Alekseev, O. A. Anisimov, L. N. Aristova, M. Yu. Bardin, E. G. Bogdanova, O. N. Bulygina, V. Yu. Georgievskii, V. A. Govorkova, V. V. Ivanov, B. M. Il’in, L. K. Kleshchenko, M. V. Klyueva, N. K. Kononova, S. P. Malevskii-Malevich, E. L. Makhotkina, V. I. Meleshko, E. D. Nadezhina, T. V. Pavlova, N. N. Paramonova, O. M. Pokrovskii, V. N. Razuvaev, E. Ya. Ran’kova, E. V. Rocheva, T. P. Svetlova, V. V. Stadnik, E. I. Khlebnikova, M. Z. Shaimardanov, A. L. Shalygin, I. A. Shiklomanov, I. M. Shkol’nik, and B. E. Shneerov, Estimation Report about Climate Changes and their Consequences in the Russian Federation. Vol. 1. Climate Changes (Rosgidromet, Moscow, 2008) [in Russian].

    Google Scholar 

  4. 4.

    G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).

    Article  Google Scholar 

  5. 5.

    K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205 (2014).

    Google Scholar 

  6. 6.

    K. M. Firsov, T. Yu. Chesnokova, and I. I. Klitochenko, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).

    Google Scholar 

  7. 7.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc. 370, 2557–2577 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    G. Radel, K. P. Shine, and I. V. Ptashnik, “Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths,” Q. J. R. Meteorol. Soc. 141, 727–738 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26 (6), 499–506 (2013).

    Article  Google Scholar 

  11. 11.

    D. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502 (1988).

    ADS  Article  Google Scholar 

  13. 13. access: 20.06.2017).

  14. 14.

    V. S. Komarov and N. Ya. Lomakina, Statistical Models of the Boundary Air Layer in Western Siberia (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].

    Google Scholar 

  15. 15.

    MODIS Atmosphere: Monthly Global Product. URL: access: 6.06.2017).

  16. 16.

    R. R. De Leon and J. D. Haigh, “Infrared properties of cirrus clouds in climate models,” Q. J. R. Meteorol. Soc. 133, 273–282 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).

    ADS  Article  Google Scholar 

  18. 18.

    F. X. Kneizys, D. C. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shettle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 MODEL, Ed. by L.W. Abreu and G.P. Anderson (Ontar Corporation, North Andover, USA, 1996).

  19. 19.

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-µm atmospheric windows,” J. Dir. Energy 2 (2), 151–161 (2006).

    Google Scholar 

  22. 22.

    D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by crds at room temperature in the 1.6 µm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).

    Google Scholar 

  24. 24.

    K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows— current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).

    ADS  Article  Google Scholar 

  25. 25. (last access: 17.06.2017).

Download references

Author information



Corresponding author

Correspondence to K. M. Firsov.

Additional information

Original Russian Text © K.M. Firsov, T.Yu. Chesnokova, A.A. Razmolov, A.V. Chentsov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Firsov, K.M., Chesnokova, T.Y., Razmolov, A.A. et al. Contribution of the Water Vapor Continuum Absorption to Shortwave Solar Fluxes in the Earth’s Atmosphere with Cirrus Cloudiness. Atmos Ocean Opt 31, 1–8 (2018).

Download citation


  • continuum absorption
  • water vapor
  • shortwave radiative fluxes
  • cloudiness