Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 1–8 | Cite as

Contribution of the Water Vapor Continuum Absorption to Shortwave Solar Fluxes in the Earth’s Atmosphere with Cirrus Cloudiness

  • K. M. FirsovEmail author
  • T. Yu. Chesnokova
  • A. A. Razmolov
  • A. V. Chentsov
Optical Waves Propagation


The solar radiative fluxes in cloudy and cloudless atmospheres are calculated taking into account multiple scattering and absorption. The cloudy conditions observed in Tomsk and Volgograd regions are considered. A comparison between the fluxes calculated using different models of water vapor continuum absorption, such as the MT_CKD empirical model, commonly used in the atmospheric simulation, and the continuum model based on the CAVIAR experimental data, is carried out. The impact of the water vapor continuum on the shortwave radiative fluxes in the presence of different cloud types is estimated.


continuum absorption water vapor shortwave radiative fluxes cloudiness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Climate Change 2014. Synthesis Report, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2015).Google Scholar
  2. 2.
    V. F. Loginov, Radiative Factors and Evidence Base of Modern Climate Changes (Belarus. Nauka, Minsk, 2012) [in Russian].Google Scholar
  3. 3.
    V. P. Meleshko, G. V. Gruza, A. S. Zaitsev, I. L. Karol’, V. M. Kattsov, N. V. Kobysheva, A. V. Meshcherskaya, V. M. Mirvis, A. I. Reshetnikov, P. V. Sporyshev, E.M. Akent’eva, G. V. Alekseev, O. A. Anisimov, L. N. Aristova, M. Yu. Bardin, E. G. Bogdanova, O. N. Bulygina, V. Yu. Georgievskii, V. A. Govorkova, V. V. Ivanov, B. M. Il’in, L. K. Kleshchenko, M. V. Klyueva, N. K. Kononova, S. P. Malevskii-Malevich, E. L. Makhotkina, V. I. Meleshko, E. D. Nadezhina, T. V. Pavlova, N. N. Paramonova, O. M. Pokrovskii, V. N. Razuvaev, E. Ya. Ran’kova, E. V. Rocheva, T. P. Svetlova, V. V. Stadnik, E. I. Khlebnikova, M. Z. Shaimardanov, A. L. Shalygin, I. A. Shiklomanov, I. M. Shkol’nik, and B. E. Shneerov, Estimation Report about Climate Changes and their Consequences in the Russian Federation. Vol. 1. Climate Changes (Rosgidromet, Moscow, 2008) [in Russian].Google Scholar
  4. 4.
    G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).CrossRefGoogle Scholar
  5. 5.
    K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205 (2014).Google Scholar
  6. 6.
    K. M. Firsov, T. Yu. Chesnokova, and I. I. Klitochenko, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).Google Scholar
  7. 7.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc. 370, 2557–2577 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    G. Radel, K. P. Shine, and I. V. Ptashnik, “Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths,” Q. J. R. Meteorol. Soc. 141, 727–738 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26 (6), 499–506 (2013).CrossRefGoogle Scholar
  11. 11.
    D. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502 (1988).ADSCrossRefGoogle Scholar
  13. 13. access: 20.06.2017).Google Scholar
  14. 14.
    V. S. Komarov and N. Ya. Lomakina, Statistical Models of the Boundary Air Layer in Western Siberia (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].Google Scholar
  15. 15.
    MODIS Atmosphere: Monthly Global Product. URL: access: 6.06.2017).Google Scholar
  16. 16.
    R. R. De Leon and J. D. Haigh, “Infrared properties of cirrus clouds in climate models,” Q. J. R. Meteorol. Soc. 133, 273–282 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    F. X. Kneizys, D. C. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shettle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 MODEL, Ed. by L.W. Abreu and G.P. Anderson (Ontar Corporation, North Andover, USA, 1996).Google Scholar
  19. 19.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-µm atmospheric windows,” J. Dir. Energy 2 (2), 151–161 (2006).Google Scholar
  22. 22.
    D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by crds at room temperature in the 1.6 µm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).Google Scholar
  24. 24.
    K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows— current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).ADSCrossRefGoogle Scholar
  25. 25. (last access: 17.06.2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. M. Firsov
    • 1
    Email author
  • T. Yu. Chesnokova
    • 2
  • A. A. Razmolov
    • 1
  • A. V. Chentsov
    • 2
  1. 1.Volgograd State UniversityVolgogradRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of ScienceTomskRussia

Personalised recommendations