Skip to main content

Generation of Diffuse Jets and Runaway Electron Beams in Air, SF6, and Helium at Low Pressures


Nanosecond discharges in air, SF6, and helium at pressures of units–tens of Torr are studied. Spatial inhomogeneities of diffuse jets and autographs of runaway electron (RAE) beams are recorded in all three gases during a discharge in a nonuniform electric field. It is shown that diffuse jets change their shape and their lengths increase and change from pulse to pulse in the discharge gap as the pressure decreases; further, it is confirmed that the RAE beam amplitude increases as the gas pressure decreases. It is assumed that inhomogeneities observed in the diffuse jets and RAE beams can be associated with transient luminous events in the Earth’s atmosphere that have sizes of tens of kilometers and occur at high altitudes at low pressures under high thunderstorm activity.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. M. Wescott, D. Sentman, H. C. Stenbaek-Nielsen, P. Huet, M. J. Heavner, and D. R. Moudry, “New evidence for the brightness and ioniszation of blue starters and blue jets,” J. Geophys. Res., A 106 (10), 21549–21554 (2001).

    ADS  Article  Google Scholar 

  2. 2.

    V. P. Pasko, “Blue jets and gigantic jets: Transient luminous events between thunderstorm tops and the lower ionosphere,” Plasma Phys. Controled. Fusion 50 (12), 124050 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    A. Ihaddadene and S. Celestin, “Determination of sprite streamers altitude based N2 spectroscopic analysis,” J. Geophys. Res.: Space Phys. 122 (1), 1000–1014 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    W. Xu, S. Celestin, V. P. Pasko, and R. A. Marshall, “A novel type of transient luminous event produced by terrestrial gamma-ray flashes,” Geophys. Res. Lett. 44 (5), 2571–2578 (2017).

    ADS  Google Scholar 

  5. 5.

    M. I. Panasyuk, S. I. Svertilov, V. V. Bogomolov, G. K. Garipov, E. A. Balan, V. O. Barinova, and B. A. Khrenov, “RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft,” Adv. Space Res. 57 (3), 835–849 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Atmospheric Electrooptical Phenomena (NTL, Tomsk, 2015) [in Russian].

    Google Scholar 

  7. 7.

    A. Robledo-Martinez, G. Palacios, A. Vera, and H. M. Sobral, “Modelling sprites and blue jets in the lab through the discharge of a dielectric,” in Proc. of the 31st ICPIG Conference, July 14–19, 2013, Granada, Spain. P. PS2-001.

  8. 8.

    V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana 30 (3), 243–252 (2017).

    Article  Google Scholar 

  9. 9.

    E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsyn, V. F. Tarasenko, and E. Kh. Baksht, “Phenomenon of apokamp discharge,” JETP Lett. 103 (12), 761–764 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Generation of Runaway Electrons and X-Rays in High-Pressure Discharges, Ed. by V.F. Tarasenko (STT, Tomsk, 2015) [in Russian].

  11. 11.

    V. F. Tarasenko, D. V. Beloplotov, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, “Analogue of bead lightning in a pulse discharge initiated by runaway electrons in atmospheric pressure air,” Atmos. Ocean. Opt. 28 (6), 591–597 (2015).

    Article  Google Scholar 

  12. 12.

    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, D. A. Sorokin, and V. F. Tarasenko, “Effect of gas pressure on amplitude and duration of electron beam current in a gas-filled diode,” Tech. Phys. 53 (12), 1560–1564 (2008).

    Article  Google Scholar 

  13. 13.

    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “High-current-density subnanosecond electron beams formed in a gas-filled diode at low pressures,” Tech. Phys. Lett. 32 (11), 948–950 (2006).

    ADS  Article  Google Scholar 

  14. 14.

    I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, “The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure,” Instrum. Exper. Tech. 55 (1), 72–77 (2012).

    Article  Google Scholar 

  15. 15.

    V. F. Tarasenko, D. V. Rybka, A. G. Burachenko, M. I. Lomaev, and E. V. Balzovsky, “Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air,” Rev. Sci. Instrum. 83 (8), 086106 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. A. Sorokin, “Modes of generation of runaway electron beams in He, H2, Ne and N2 at a pressure of 1–760 Torr,” IEEE Trans. Plasma Sci. 38 (10), 2583–2587 (2010).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © A.G. Burachenko, V.F. Tarasenko, I.D. Kostyrya, E.Kh. Baksht, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burachenko, A.G., Tarasenko, V.F., Kostyrya, I.D. et al. Generation of Diffuse Jets and Runaway Electron Beams in Air, SF6, and Helium at Low Pressures. Atmos Ocean Opt 31, 96–100 (2018).

Download citation


  • low-pressure nanosecond discharge
  • nonuniform electric field
  • beams of runaway electrons
  • experimental simulation of sprites