Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 96–100 | Cite as

Generation of Diffuse Jets and Runaway Electron Beams in Air, SF6, and Helium at Low Pressures

  • A. G. Burachenko
  • V. F. TarasenkoEmail author
  • I. D. Kostyrya
  • E. Kh. Baksht
Optical Instrumentation
  • 18 Downloads

Abstract

Nanosecond discharges in air, SF6, and helium at pressures of units–tens of Torr are studied. Spatial inhomogeneities of diffuse jets and autographs of runaway electron (RAE) beams are recorded in all three gases during a discharge in a nonuniform electric field. It is shown that diffuse jets change their shape and their lengths increase and change from pulse to pulse in the discharge gap as the pressure decreases; further, it is confirmed that the RAE beam amplitude increases as the gas pressure decreases. It is assumed that inhomogeneities observed in the diffuse jets and RAE beams can be associated with transient luminous events in the Earth’s atmosphere that have sizes of tens of kilometers and occur at high altitudes at low pressures under high thunderstorm activity.

Keywords

low-pressure nanosecond discharge nonuniform electric field beams of runaway electrons experimental simulation of sprites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Wescott, D. Sentman, H. C. Stenbaek-Nielsen, P. Huet, M. J. Heavner, and D. R. Moudry, “New evidence for the brightness and ioniszation of blue starters and blue jets,” J. Geophys. Res., A 106 (10), 21549–21554 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    V. P. Pasko, “Blue jets and gigantic jets: Transient luminous events between thunderstorm tops and the lower ionosphere,” Plasma Phys. Controled. Fusion 50 (12), 124050 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ihaddadene and S. Celestin, “Determination of sprite streamers altitude based N2 spectroscopic analysis,” J. Geophys. Res.: Space Phys. 122 (1), 1000–1014 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    W. Xu, S. Celestin, V. P. Pasko, and R. A. Marshall, “A novel type of transient luminous event produced by terrestrial gamma-ray flashes,” Geophys. Res. Lett. 44 (5), 2571–2578 (2017).ADSGoogle Scholar
  5. 5.
    M. I. Panasyuk, S. I. Svertilov, V. V. Bogomolov, G. K. Garipov, E. A. Balan, V. O. Barinova, and B. A. Khrenov, “RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft,” Adv. Space Res. 57 (3), 835–849 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Atmospheric Electrooptical Phenomena (NTL, Tomsk, 2015) [in Russian].Google Scholar
  7. 7.
    A. Robledo-Martinez, G. Palacios, A. Vera, and H. M. Sobral, “Modelling sprites and blue jets in the lab through the discharge of a dielectric,” in Proc. of the 31st ICPIG Conference, July 14–19, 2013, Granada, Spain. P. PS2-001.Google Scholar
  8. 8.
    V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana 30 (3), 243–252 (2017).CrossRefGoogle Scholar
  9. 9.
    E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsyn, V. F. Tarasenko, and E. Kh. Baksht, “Phenomenon of apokamp discharge,” JETP Lett. 103 (12), 761–764 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Generation of Runaway Electrons and X-Rays in High-Pressure Discharges, Ed. by V.F. Tarasenko (STT, Tomsk, 2015) [in Russian].Google Scholar
  11. 11.
    V. F. Tarasenko, D. V. Beloplotov, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, “Analogue of bead lightning in a pulse discharge initiated by runaway electrons in atmospheric pressure air,” Atmos. Ocean. Opt. 28 (6), 591–597 (2015).CrossRefGoogle Scholar
  12. 12.
    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, D. A. Sorokin, and V. F. Tarasenko, “Effect of gas pressure on amplitude and duration of electron beam current in a gas-filled diode,” Tech. Phys. 53 (12), 1560–1564 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “High-current-density subnanosecond electron beams formed in a gas-filled diode at low pressures,” Tech. Phys. Lett. 32 (11), 948–950 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, “The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure,” Instrum. Exper. Tech. 55 (1), 72–77 (2012).CrossRefGoogle Scholar
  15. 15.
    V. F. Tarasenko, D. V. Rybka, A. G. Burachenko, M. I. Lomaev, and E. V. Balzovsky, “Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air,” Rev. Sci. Instrum. 83 (8), 086106 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. A. Sorokin, “Modes of generation of runaway electron beams in He, H2, Ne and N2 at a pressure of 1–760 Torr,” IEEE Trans. Plasma Sci. 38 (10), 2583–2587 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Burachenko
    • 1
  • V. F. Tarasenko
    • 1
    Email author
  • I. D. Kostyrya
    • 1
  • E. Kh. Baksht
    • 1
  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations