Skip to main content

Comparative Assessments of the Crosswind Speed from Optical and Acoustic Measurements in the Surface Air Layer


A passive optical method for measurements of the average crosswind speed on the atmospheric path has been developed. The crosswind speed estimation is based on the correlation algorithm for measuring fluctuations of the energy centroids of images of topographic objects under natural daylight. Test results of a windspeed- meter prototype, constructed based on this principle, are described. The wind velocity assessments recorded by this passive optical meter and an acoustic weather station are compared. The optimal time of accumulation of the cross-correlation function is estimated, which ensures stable real-time wind measurements.

This is a preview of subscription content, access via your institution.


  1. 1.

    T.-I. Wang, US Patent No. 6611319 B2 (26 August 2003).

    Google Scholar 

  2. 2.

    A. L. Afanasiev, V. A. Banakh, and A. P. Rostov, “Estimate of wind velocity in the atmosphere based on an analysis of turbulent distortions of laser beam images registered by video camera,” Atmos. Ocean. Opt. 24 (1), 88–94 (2011).

    Article  Google Scholar 

  3. 3.

    A. L. Afanasiev, V. A. Banakh, and A. P. Rostov, “Wavelet profiling of wind velocity using intensity fluctuations of laser beam propagating in the atmosphere,” Opt. Spectrosc. 105 (4), 639–645 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    M. B. Roopashree, Vyas. Akondi, and Prasad B. Raghavendra, “A Review of Atmospheric Wind Speed Measurement Techniques with Shack Hartmann Wavefront Imaging Sensor in Adaptive Optics,” J. Indian Inst. Sci 93, 67–84 (2013).

    Google Scholar 

  5. 5.

  6. 6.

    R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light beam,” Appl. Opt. 11 (2), 239–243 (1972).

    ADS  Article  Google Scholar 

  7. 7.

    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in Turbulent Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  8. 8.

    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, Boston; London, 2013).

    Google Scholar 

  9. 9.

    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 µm coherent Doppler lidar,” Opt. Lett. 40 (14), 3408–3411 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    S. F. Clifford, G. R. Ochs, and T.-I. Wang, “Optical wind sensing by observing the scintillations of a random scene,” Appl. Opt. 14 (12), 2844–2850 (1975).

    ADS  Article  Google Scholar 

  11. 11.

    D. L. Walters, “Passive remote crosswind sensor,” Appl. Opt. 16 (10), 2625–2626 (1977).

    ADS  Article  Google Scholar 

  12. 12.

    O. Porat and J. Shapira, “Passive cross-wind remote sensing using optical turbulence-induced fluctuations,” Proc. SPIE—Int. Soc. Opt. Eng. 7828, 78280 (2010).

    ADS  Google Scholar 

  13. 13.

    V. A. Banakh, D. A. Marakasov, and M. A. Vorontsov, “Cross-wind profiling based on the scattered wave scintillations in a telescope focus,” Appl. Opt. 46 (33), 8104–8117 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    V. A. Banakh and D. A. Marakasov, “Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere,” Quantum Electron. 38, 404–408 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    M. Belenkii, Patent US No. 8,279,287 B2 (2 October 2012).

    Google Scholar 

  16. 16.

    D. A. Marakasov, “The correlation of the displacements of the images of point sources in the turbulent atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, CID 9680 1U (2015).

    Google Scholar 

  17. 17.

    D. A. Marakasov and A. L. Afanasiev, “Correlation of displacements of image elements of complex shaped objects in the turbulent atmosphere, Izv. vuzov, Fiz. 58 (8/3), 204–206 (2015).

    Google Scholar 

  18. 18.

    D. A. Marakasov, “Estimation of mean wind velocity from correlations of centers of gravity shifings for noncoherent sources in the turbulent atmosphere,” Opt. Atmos. Okeana 29 (4), 294–299 (2016).

    Google Scholar 

  19. 19.

    A. L. Afanasiev, V. A. Banakh, and A.P. Rostov, “Estimate of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects,” Atmos. Ocean. Opt. 29 (5), 422–430 (2016).

    Article  Google Scholar 

  20. 20.

    Reference Book on Special Functions with Formulae, Plots, and Mathematical Tables, Ed. by M. Abramovits and I. Stigan (Nauka, Moscow, 1979) [in Russian].

Download references

Author information



Corresponding author

Correspondence to A. L. Afanasiev.

Additional information

Original Russian Text © A.L. Afanasiev, V.A. Banakh, D.A. Marakasov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.L., Banakh, V.A. & Marakasov, D.A. Comparative Assessments of the Crosswind Speed from Optical and Acoustic Measurements in the Surface Air Layer. Atmos Ocean Opt 31, 43–48 (2018).

Download citation


  • incoherent source
  • image correlation
  • path-averaged wind velocity
  • passive optical meter
  • acoustic anemometer
  • turbulence