Atmospheric and Oceanic Optics

, Volume 31, Issue 1, pp 43–48 | Cite as

Comparative Assessments of the Crosswind Speed from Optical and Acoustic Measurements in the Surface Air Layer

  • A. L. AfanasievEmail author
  • V. A. Banakh
  • D. A. Marakasov
Optical Instrumentation


A passive optical method for measurements of the average crosswind speed on the atmospheric path has been developed. The crosswind speed estimation is based on the correlation algorithm for measuring fluctuations of the energy centroids of images of topographic objects under natural daylight. Test results of a windspeed- meter prototype, constructed based on this principle, are described. The wind velocity assessments recorded by this passive optical meter and an acoustic weather station are compared. The optimal time of accumulation of the cross-correlation function is estimated, which ensures stable real-time wind measurements.


incoherent source image correlation path-averaged wind velocity passive optical meter acoustic anemometer turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.-I. Wang, US Patent No. 6611319 B2 (26 August 2003).Google Scholar
  2. 2.
    A. L. Afanasiev, V. A. Banakh, and A. P. Rostov, “Estimate of wind velocity in the atmosphere based on an analysis of turbulent distortions of laser beam images registered by video camera,” Atmos. Ocean. Opt. 24 (1), 88–94 (2011).CrossRefGoogle Scholar
  3. 3.
    A. L. Afanasiev, V. A. Banakh, and A. P. Rostov, “Wavelet profiling of wind velocity using intensity fluctuations of laser beam propagating in the atmosphere,” Opt. Spectrosc. 105 (4), 639–645 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. B. Roopashree, Vyas. Akondi, and Prasad B. Raghavendra, “A Review of Atmospheric Wind Speed Measurement Techniques with Shack Hartmann Wavefront Imaging Sensor in Adaptive Optics,” J. Indian Inst. Sci 93, 67–84 (2013).Google Scholar
  5. 5. Scholar
  6. 6.
    R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light beam,” Appl. Opt. 11 (2), 239–243 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in Turbulent Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].Google Scholar
  8. 8.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, Boston; London, 2013).Google Scholar
  9. 9.
    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 µm coherent Doppler lidar,” Opt. Lett. 40 (14), 3408–3411 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    S. F. Clifford, G. R. Ochs, and T.-I. Wang, “Optical wind sensing by observing the scintillations of a random scene,” Appl. Opt. 14 (12), 2844–2850 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Walters, “Passive remote crosswind sensor,” Appl. Opt. 16 (10), 2625–2626 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    O. Porat and J. Shapira, “Passive cross-wind remote sensing using optical turbulence-induced fluctuations,” Proc. SPIE—Int. Soc. Opt. Eng. 7828, 78280 (2010).ADSGoogle Scholar
  13. 13.
    V. A. Banakh, D. A. Marakasov, and M. A. Vorontsov, “Cross-wind profiling based on the scattered wave scintillations in a telescope focus,” Appl. Opt. 46 (33), 8104–8117 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Banakh and D. A. Marakasov, “Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere,” Quantum Electron. 38, 404–408 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    M. Belenkii, Patent US No. 8,279,287 B2 (2 October 2012).Google Scholar
  16. 16.
    D. A. Marakasov, “The correlation of the displacements of the images of point sources in the turbulent atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, CID 9680 1U (2015).Google Scholar
  17. 17.
    D. A. Marakasov and A. L. Afanasiev, “Correlation of displacements of image elements of complex shaped objects in the turbulent atmosphere, Izv. vuzov, Fiz. 58 (8/3), 204–206 (2015).Google Scholar
  18. 18.
    D. A. Marakasov, “Estimation of mean wind velocity from correlations of centers of gravity shifings for noncoherent sources in the turbulent atmosphere,” Opt. Atmos. Okeana 29 (4), 294–299 (2016).Google Scholar
  19. 19.
    A. L. Afanasiev, V. A. Banakh, and A.P. Rostov, “Estimate of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects,” Atmos. Ocean. Opt. 29 (5), 422–430 (2016).CrossRefGoogle Scholar
  20. 20.
    Reference Book on Special Functions with Formulae, Plots, and Mathematical Tables, Ed. by M. Abramovits and I. Stigan (Nauka, Moscow, 1979) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. L. Afanasiev
    • 1
    Email author
  • V. A. Banakh
    • 1
  • D. A. Marakasov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations