Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 533–541 | Cite as

Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations

Atmospheric Radiation, Optical Weather, and Climate


A model is used to estimate black carbon (BC) concentrations in air over different regions of the Russian North in 2000–2013. We discuss different BC physical sources in the atmosphere (anthropogenic sources and wildfires), emissions from these sources on the territory of Russia (according to different data), and estimate their contributions to BC concentration in air over Russian Arctic regions during winter and summer. This is done using satellite data on BC emissions to the atmosphere (GFED, MACCity, and others), as well as our estimates based on official statistical data of the Russian Federation. Long-range BC transport in the atmosphere was analyzed by the method of back trajectory statistics of air mass transport, developed previously using ARL NOAA data (HYSPLIT model). In the near-ground air over northern regions of the Russian Federation, the contributions of anthropogenic BC sources predominate over those from wildfires even during summer (except in Ust-Lena Nature Reserve), when contributions from remote anthropogenic sources are minimal. Average BC concentrations in air along the coast of the Arctic Ocean vary by two orders of magnitude, with the maximum in the region of Nenets Nature Reserve (the main source is nearby flares from casing-head gas combustion in regions of active hydrocarbon fuel production). The BC concentrations in air show large interannual and interseasonal variations; therefore, estimates according to multiyear average indices bear little information. Thus, measurements of BC content in air over a single site during one season or even one year should not serve a basis for long-term conclusions and forecasts pertaining to the entire region.


black carbon Russian BC emissions satellite data data of Russian statistics long-range atmospheric transport the Arctic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R.P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nojgaard, and H. Skov, “Wildfires in Northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16 (12), 7587–7604 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    K. Huang, J. S. Fu, V. Y. Prikhodko, J. M. Storey, A. Romanov, E. L. Hodson, J. Cresko, I. Morozova, Y. Ignatieva, and J. Cabaniss, “Russian anthropogenic black carbon: emission reconstruction and Arctic black carbon simulation,” J. Geophys. Res. Atmos. 120 (2015). doi 10.1002/2015JD023358Google Scholar
  3. 3.
    I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv. Atmos. Ocean. Phys. 48 (5), 496–503 (2012).CrossRefGoogle Scholar
  4. 4.
    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016). doi 10.3103/S1068373916020047CrossRefGoogle Scholar
  5. 5.
    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).Google Scholar
  6. 6.
    I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv. Atmos. Ocean. Phys. 49 (5), 461–468 (2013).CrossRefGoogle Scholar
  7. 7.
    Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, 2014).Google Scholar
  8. 8.
    AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP, Oslo, 2015).Google Scholar
  9. 9.
    A. A. Vinogradova, “Anthropogenic black carbon emissions to the atmosphere: surface distribution through Russian territory,” Atmos. Oceanic Opt. 28 (2), 158–164 (2015).CrossRefGoogle Scholar
  10. 10.
    N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Black carbon emissions from wildfires on forest lands of the Russian Federation in 2007–2012,” Rus. Meteorol. Hydrol. 40 (7), 5–17 (2015).Google Scholar
  11. 11.
    A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).CrossRefGoogle Scholar
  12. 12.
    A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic,” Atmos. Ocean. Opt. 29 (6), 545–550 (2016).CrossRefGoogle Scholar
  13. 13.
    Yearbook on the pollutant emissions in the air of cities and regions of the Russian Federation for 2010, Ed. by A.Yu. Nedre (SRI “Atmosphere”, St. Petersburg, 2011) [in Russian].Google Scholar
  14. 14.
    A. A. Vinogradova, “Distant evaluation of atmospheric pollution influence on the remote territories,” Geofiz. Protsessy Biosfera 13 (4), 5–20 (2014).Google Scholar
  15. 15.
    A. A. Vinogradova and A. O. Veremeichik, “Model estimates of anthropogenic black carbon concentration in the Russian Arctic atmosphere,” Opt. Atmos. Okeana 26 (6), 443–451 (2013).Google Scholar
  16. 16.
    A. A. Vinogradova and T. Ya. Ponomareva, “Atmospheric transport of anthropogenic impurities to the Arctic (1986–2010),” Atmos. Ocean. Opt. 25 (6), 414–422 (2012).CrossRefGoogle Scholar
  17. 17.
    D. Hirdman, H. Sodemann, S. Eckhardt, J. F. Burkhart, A. Jefferson, T. Mefford, P. K. Quinn, S. Sharma, J. Strom, and A. Stohl, “Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output,” Atmos. Chem. Phys. 10 (2), 669–693 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    S. A. Sitnov, “Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: interrelation between the variation in pollutants and meteorological parameters,” Izv. Atmos. Ocean. Phys. 47 (6), 714–728 (2011).CrossRefGoogle Scholar
  19. 19.
    M. T. Limon-Sanchez, P. Carbajal-Romero, L. Hernandez-Mena, H. Saldarriaga-Norena, A. Lopez-Lopez, R. Cosio-Ramirez, J. L. Arriaga-Colina, and W. Smith, “Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008,” Atmos. Pollution Res. 2, 358–365 (2011).CrossRefGoogle Scholar
  20. 20.
    A. S. Emilenko and V. M. Kopeikin, “Comparison of synchronous measurements of soot and submicron concentrations in regions with different anthropogenic loadings,” Atmos. Ocean. Opt. 22 (4), 421–427 (2009).CrossRefGoogle Scholar
  21. 21.
    V. M. Kopeikin, “Monitoring of the soot aerosol in the atmosphere over Russia in the TROICA international experiments,” Atmos. Ocean. Opt. 20 (7), 586–590 (2007).Google Scholar
  22. 22.
    A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky, “Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions,” Atmos. Chem. Phys. 13 (17), 8833–8855 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    V. P. Shevchenko, D. P. Starodymova, A. A. Vinogradova, A. P. Lisitsyn, V. N. Makarov, S. A. Popova, V. V. Sivonen, and V. P. Sivonen, “Elemental and organic carbon in atmospheric aerosols over the northwestern coast of Kandalaksha Bay of the White Sea,” Dokl. Earth Sci. 461 (1), 242–246 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    V. M. Kopeikin and I. A. Repina, E. I. Grechko, and B. I. Ogorodnikov, “Measurements of soot aerosol content in the near-water atmospheric layer in the Southern and Northern hemispheres,” Atmos. Oceanic Opt. 23 (6), 500–507 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.A. M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations