Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 564–573 | Cite as

Interannual variations in aerosol microstructure parameters according to data of sun photometer measurements in Tomsk

Optical Models and Databases
  • 8 Downloads

Abstract

Results of studying the time variations in aerosol microstructure parameters retrieved by inverting the spectral measurements of the aerosol optical depth are presented. The input data were obtained at the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences using SP-type sun photometers during periods of observations in 2003–2006 and 2011–2014. During the first period, aerosol optical depth was measured at 13 wavelengths in the range 0.37–4 μm. In the second period, the upper boundary of the wavelength range of measurements was 2.14 μm. The total amount of data processed had been more than 7000 hourly average spectra. The aerosol microstructure parameters, such as the geometric cross section, volume concentration, and average particle radius, were analyzed.

Keywords

aerosol optical depth aerosol microstructure inverse problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WMO/GAW Aerosol Measurement Procedures: Guidelines and Recommendations, GAW Report N 153 (WMO, Geneva, 2003).Google Scholar
  2. 2.
    G. I. Gorchakov, A. S. Emilenko, M. A. Sviridenkov, and V. N. Sidorov, “Study of long-term variability of submicron aerosol concentration,” Atmos. Ocean. Opt. 11 (6), 530–531 (1998).Google Scholar
  3. 3.
    A. A. Isakov, A. N. Gruzdev, and A. V. Tikhonov, “Long-period variations of optical and microphysical parameters of the near-surface aerosol,” Atmos. Ocean. Opt. 18 (5-6), 350–356 (2005).Google Scholar
  4. 4.
    A. A. Isakov and A. N. Gruzdev, “Long-period variations in optical and microphysical parameters of surface aerosol at Zvenigorod Scientific Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45 (2), 245–254 (2009).Google Scholar
  5. 5.
    A. N. Gruzdev and A. A. Isakov, “On the nature of long-period variations in mass concentration of nearground aerosol,” Atmos. Ocean. Opt. 29 (1), 73–78 (2016).CrossRefGoogle Scholar
  6. 6.
    V. S. Kozlov, M. V. Panchenko, A. G. Tumakov, V. P. Shmargunov, and E. P. Yausheva, “Some peculiarities of the mutual variability of the content of soot and sub-micron aerosol in the near-ground air layer,” J. Aerosol Sci. 28, suppl. 1, 231–232 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires,” Atmos. Ocean. Opt. 19 (6), 434–440 (2006).Google Scholar
  8. 8.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere,” Atmos. Ocean. Opt. 20 (12), 987–990 (2007).Google Scholar
  9. 9.
    E. V. Makienko, Yu. A. Pkhalagov, R. F. Rakhimov, V. N. Uzhegov, and N. N. Shchelkanov, “Study of the dynamics of evolution of optically dense winter haze by the technique of inversion of the measured spectral transmittance of the atmosphere,” Atmos. Ocean. Opt. 7 (11-12), 816–818 (1994).Google Scholar
  10. 10.
    E. V. Makienko, Yu. A. Pkhalagov, R. F. Rakhimov, V. N. Uzhegov, and N. N. Shchelkanov, “Analysis of microstructure features of the winter haze aerosol using the results of optical measurement data inversion,” Atmos. Ocean. Opt. 8 (9), 671–675 (1995).Google Scholar
  11. 11.
    E. V. Makienko, R. F. Rakhimov, Yu. A. Pkhalagov, and V. N. Uzhegov, “Microphysical interpretation of the anomalous spectral behavior of aerosol extinction along a ground path,” Atmos. Ocean. Opt. 16 (12), 1008–1012 (2003).Google Scholar
  12. 12.
    D. M. Kabanov, T. R. Kurbangaliev, T. M. Rasskazchikova, S. M. Sakerin, and O. G. Khutorova, “The influence of synoptic factors of variations of atmospheric aerosol optical depth under Siberian conditions,” Atmos. Ocean. Opt. 24 (6), 543–553 (2011).CrossRefGoogle Scholar
  13. 13.
    http://www.cimel.fr/Google Scholar
  14. 14.
    B. N. Holben F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    http://aeronet.gsfc.nasa.gov/Google Scholar
  16. 16.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and Yu. S. Turchinovich, “System for network monitoring of the atmospheric constituents active in radiative processes. Part 1. Sun photometers,” Atmos. Ocean. Opt. 17 (4), 314–320 (2004).Google Scholar
  17. 17.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and V. V. Knyazev, “Sun photometers for measuring spectral air transparency in stationary and mobile conditions,” Atmos. Ocean. Opt. 26 (4), 352–356 (2013).CrossRefGoogle Scholar
  18. 18.
    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. I. Theory and numerical experiment for submicron range of particle sizes,” Atmos. Ocean. Opt. 19 (4), 259–265 (2006).Google Scholar
  19. 19.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem,” Atmos. Ocean. Opt. 26 (6), 473–479 (2013).CrossRefGoogle Scholar
  20. 20.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part II. Inversion results,” Atmos. Ocean. Opt. 26 (6), 480–491 (2013).CrossRefGoogle Scholar
  21. 21.
    V. V. Veretennikov and S. S. Men’shchikova, “Annual cycle in the variability of aerosol microstructure parameters according to solar photometry data,” Atmos. Ocean. Opt. 28 (2), 126–132 (2015).CrossRefGoogle Scholar
  22. 22.
    V. V. Veretennikov and S. S. Men’shchikova, “Reconstruction of the aerosol microstructure from measurements of light extinction in the atmosphere under restriction of the spectral range,” Atmos. Ocean. Opt. 29 (1), 18–26 (2016).CrossRefGoogle Scholar
  23. 23.
    V. V. Veretennikov, “Estimation of microstructure parameters of the coarsely dispersed aerosol based on their statistical relationships with spectral measurements of the aerosol optical thickness,” Proc. SPIE 10035, 1003541 (2016).CrossRefGoogle Scholar
  24. 24.
    B. D. Belan, G. O. Zadde, A. I. Kuskov, and T. M. Rasskazchikova, “Spectral transmittance of the atmosphere of basic synoptic objects,” Atmos. Ocean. Opt. 7 (9), 640–645 (1994).Google Scholar
  25. 25.
    B. D. Belan, T. M. Rasskazchikova, and T. K. Sklyadneva, “Synoptic pattern in Tomsk since 1993 until 2004,” Atmos. Ocean. Opt. 18 (10), 796–801 (2005).Google Scholar
  26. 26.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires,” Atmos. Ocean. Opt. 19 (6), 434–440 (2006).Google Scholar
  27. 27.
    E. V. Makienko, D. M. Kabanov, R. F. Rakhimov, and S. M. Sakerin, “Variations of aerosol microstructure under smoke effect assessed from inversion of spectral optical measurements,” Atmos. Ocean. Opt. 20 (4), 287–293 (2007).Google Scholar
  28. 28.
    S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, “Peculiarities of many-year variations of atmospheric aerosol optical thickness and estimates of influence of different factors,” Atmos. Ocean. Opt. 21 (7), 540–545 (2008).Google Scholar
  29. 29.
    S. M. Sakerin, V. V. Veretennikov, T. B. Zhuravleva, D. M. Kabanov, and I. M. Nasrtdinov, “Comparative analysis of aerosol radiative characteristics in situations of forest fire smokes and under usual conditions,” Opt. Atmos. Okeana 23 (6), 451–461 (2010).Google Scholar
  30. 30.
    M. A. Bizin, S. A. Popova, O. V. Chankina, V. I. Makarov, M. P. Shinkorenko, B. S. Smolyakov, and K. P. Kutsenogii, “The effect of forest fires on mass concentration, disperse and chemical composition of atmospheric aerosols on a regional scale,” Opt. Atmos. Okeana 26 (6), 484–489 (2013).Google Scholar
  31. 31.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberia forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  32. 32.
    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).Google Scholar
  33. 33.
    R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, A. G. Tumakov, and V. P. Shmargunov, “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Ocean. Opt 27 (3), 275–282 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations