Skip to main content

Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR

Abstract

We explore how the microstructure parameters of atmospheric aerosol can be estimated from regression equations that describe their relationships with spectral measurements of the aerosol optical depth (AOD). Special attention is paid to the problem of estimating the volume concentration, total cross section, and mean radius of coarse aerosol particles. This problem is topical because of large errors arising when an insufficiently wide spectral range of measurements is available to retrieve these parameters using directly the AOD inversion. Estimates of the coefficients of simple and multiple linear regressions are presented together with the results of their use to retrieve the parameters of coarse-mode aerosol from data of sun photometer measurements in Tomsk.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. V. Veretennikov and S. S. Men’shchikova, “Reconstruction of the aerosol microstructure from measurements of light extinction in the atmosphere under restriction of the spectral range,” Atmos. Ocean. Opt. 29 (1), 18–26 (2016).

    Article  Google Scholar 

  2. 2.

    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. II. Division into submicron and coarse fractions,” Atmos. Ocean. Opt. 19 (4), 266–272 (2006).

    Google Scholar 

  3. 3.

    V. V. Veretennikov and S. S. Men’shchikova, “Modified algorithm for reconstructing the aerosol microstructure from measurements of spectral light extinction on the basis of the hybrid model,” Atmos. Ocean. Opt. 29 (1), 27–32 (2016).

    Article  Google Scholar 

  4. 4.

    G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Single-parametric model of surface aerosol,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17 (1), 39–49 (1981).

    Google Scholar 

  5. 5.

    V. V. Veretennikov, M. V. Kabanov, and M. V. Panchenko, “Microphysical interpretation of a single-parametric model of polarization phase functions (coastal haze),” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 22 (10), 1042–1049 (1986).

    Google Scholar 

  6. 6.

    M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, Sibirskoe otdelenie, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  7. 7.

    V. V. Veretennikov, “Interpretation of the model of spectral extinction for coastal marine haze,” Atmos. Ocean. Opt. 3 (10), 939–944 (1990).

    Google Scholar 

  8. 8.

    V. V. Veretennikov, M. V. Kabanov, M. V. Panchenko, and V. Ya. Fadeev, “Application of a single-parametric model of haze in laser sounding problems,” Opt. Atmos. Okeana 1 (2), 25–31 (1988).

    Google Scholar 

  9. 9.

    M. A. Sviridenkov, “Correlation between optical characteristics and microstructure of the near-ground aerosol,” Atmos. Ocean. Opt. 16 (5-6), 383–386 (2003).

    Google Scholar 

  10. 10.

    S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt. 24 (5), 466–477 (2011).

    Article  Google Scholar 

  11. 11.

    S. A. Lisenko and M. M. Kugeiko, “Retrieval of the mass concentration of dust in industrial emissions from data of optical sensing,” Opt. Atmos. Okeana 24 (11), 960–968 (2011).

    Google Scholar 

  12. 12.

    S. A. Lisenko and M. M. Kugeiko, “Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions,” Atmos. Ocean. Opt. 27 (6), 587–597 (2014).

    Article  Google Scholar 

  13. 13.

    S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data,” Atmos. Ocean. Opt. 28 (5), 455–465 (2015).

    Article  Google Scholar 

  14. 14.

    V. V. Veretennikov and S. S. Men’shchikova, “Annual cycle in the variability of aerosol microstructure parameters according to solar photometry data,” Atmos. Ocean. Opt. 28 (2) 126–132 (2015).

    Article  Google Scholar 

  15. 15.

    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. I. Theory and numerical experiment for submicron range of particle sizes,” Atmos. Ocean. Opt. 19 (4), 259–265 (2006).

    Google Scholar 

  16. 16.

    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem,” Atmos. Ocean. Opt. 26 (6), 473–479 (2013).

    Article  Google Scholar 

  17. 17.

    http://aeronet.gsfc.nasa.gov/

  18. 18.

    H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York; Chapman and Hall, London, 1957).

    Google Scholar 

  19. 19.

    V. V. Veretennikov, “Simultaneous determination of aerosol microstructure and refractive index from sun photometry datam,” Atmos. Ocean. Opt. 20 (3), 192–199 (2007).

    Google Scholar 

  20. 20.

    V. V. Veretennikov and S. S. Men’shchikova, “Use of a block-iterative algorithm for retrieving aerosol integral size distributions from sun spectrophotometry data,” Atmos. Ocean. Opt. 23 (5), 37–42 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Veretennikov.

Additional information

Original Russian Text © V.V. Veretennikov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veretennikov, V.V. Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR. Atmos Ocean Opt 30, 555–563 (2017). https://doi.org/10.1134/S1024856017060148

Download citation

Keywords

  • aerosol optical depth
  • aerosol microstructure
  • correlation
  • regression