Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 555–563 | Cite as

Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR

Optical Models and Databases
  • 9 Downloads

Abstract

We explore how the microstructure parameters of atmospheric aerosol can be estimated from regression equations that describe their relationships with spectral measurements of the aerosol optical depth (AOD). Special attention is paid to the problem of estimating the volume concentration, total cross section, and mean radius of coarse aerosol particles. This problem is topical because of large errors arising when an insufficiently wide spectral range of measurements is available to retrieve these parameters using directly the AOD inversion. Estimates of the coefficients of simple and multiple linear regressions are presented together with the results of their use to retrieve the parameters of coarse-mode aerosol from data of sun photometer measurements in Tomsk.

Keywords

aerosol optical depth aerosol microstructure correlation regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Veretennikov and S. S. Men’shchikova, “Reconstruction of the aerosol microstructure from measurements of light extinction in the atmosphere under restriction of the spectral range,” Atmos. Ocean. Opt. 29 (1), 18–26 (2016).CrossRefGoogle Scholar
  2. 2.
    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. II. Division into submicron and coarse fractions,” Atmos. Ocean. Opt. 19 (4), 266–272 (2006).Google Scholar
  3. 3.
    V. V. Veretennikov and S. S. Men’shchikova, “Modified algorithm for reconstructing the aerosol microstructure from measurements of spectral light extinction on the basis of the hybrid model,” Atmos. Ocean. Opt. 29 (1), 27–32 (2016).CrossRefGoogle Scholar
  4. 4.
    G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “Single-parametric model of surface aerosol,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17 (1), 39–49 (1981).Google Scholar
  5. 5.
    V. V. Veretennikov, M. V. Kabanov, and M. V. Panchenko, “Microphysical interpretation of a single-parametric model of polarization phase functions (coastal haze),” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 22 (10), 1042–1049 (1986).Google Scholar
  6. 6.
    M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Atmospheric Hazes (Nauka, Sibirskoe otdelenie, Novosibirsk, 1988) [in Russian].Google Scholar
  7. 7.
    V. V. Veretennikov, “Interpretation of the model of spectral extinction for coastal marine haze,” Atmos. Ocean. Opt. 3 (10), 939–944 (1990).Google Scholar
  8. 8.
    V. V. Veretennikov, M. V. Kabanov, M. V. Panchenko, and V. Ya. Fadeev, “Application of a single-parametric model of haze in laser sounding problems,” Opt. Atmos. Okeana 1 (2), 25–31 (1988).Google Scholar
  9. 9.
    M. A. Sviridenkov, “Correlation between optical characteristics and microstructure of the near-ground aerosol,” Atmos. Ocean. Opt. 16 (5-6), 383–386 (2003).Google Scholar
  10. 10.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt. 24 (5), 466–477 (2011).CrossRefGoogle Scholar
  11. 11.
    S. A. Lisenko and M. M. Kugeiko, “Retrieval of the mass concentration of dust in industrial emissions from data of optical sensing,” Opt. Atmos. Okeana 24 (11), 960–968 (2011).Google Scholar
  12. 12.
    S. A. Lisenko and M. M. Kugeiko, “Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions,” Atmos. Ocean. Opt. 27 (6), 587–597 (2014).CrossRefGoogle Scholar
  13. 13.
    S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data,” Atmos. Ocean. Opt. 28 (5), 455–465 (2015).CrossRefGoogle Scholar
  14. 14.
    V. V. Veretennikov and S. S. Men’shchikova, “Annual cycle in the variability of aerosol microstructure parameters according to solar photometry data,” Atmos. Ocean. Opt. 28 (2) 126–132 (2015).CrossRefGoogle Scholar
  15. 15.
    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. I. Theory and numerical experiment for submicron range of particle sizes,” Atmos. Ocean. Opt. 19 (4), 259–265 (2006).Google Scholar
  16. 16.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem,” Atmos. Ocean. Opt. 26 (6), 473–479 (2013).CrossRefGoogle Scholar
  17. 17.
    http://aeronet.gsfc.nasa.gov/Google Scholar
  18. 18.
    H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York; Chapman and Hall, London, 1957).Google Scholar
  19. 19.
    V. V. Veretennikov, “Simultaneous determination of aerosol microstructure and refractive index from sun photometry datam,” Atmos. Ocean. Opt. 20 (3), 192–199 (2007).Google Scholar
  20. 20.
    V. V. Veretennikov and S. S. Men’shchikova, “Use of a block-iterative algorithm for retrieving aerosol integral size distributions from sun spectrophotometry data,” Atmos. Ocean. Opt. 23 (5), 37–42 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations