Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 588–595 | Cite as

Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar

Optical Instrumentation


Results of measurements of the parameters of aircraft wake vortices by a Stream Line coherent Doppler lidar during the three-day experiment on the airfield of Tolmachevo Airport are presented. The spatial dynamics and evolution of the wake vortices generated by landing aircraft of different types, from Airbus A319 passenger aircraft to heavy Boeing 747-8 cargo aircraft, are analyzed. It is shown that Stream Line lidars may be used to receive reliable information about the presence and intensity of aircraft wake vortices in the vicinity of а runway.


coherent Doppler lidar aircraft wake vortices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Babkin, A. S. Belotserkovskii, L. I. Turchak, N. A. Baranov, A. I. Zamyatin, M. I. Kanevskii, V. V. Morozov, I. V. Pasekunov, and N. Yu. Chizhov, Vortex Safety Systems for Aircraft Flights (Nauka, Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31 (1), 4–15 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    F. Kopp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21 (2), 194–206 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in the Turbulent Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].Google Scholar
  6. 6.
    S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45 (4), 1148–1155 (2008).CrossRefGoogle Scholar
  7. 7.
    I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler LIDAR,” J. Atmos. Ocean. Technol. 22 (11), 1733–1747 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26 (2), 240–250 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Yu. Arshinov, and P. N. Antokhin, “Joint radiosonde and Doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Ocean. Opt. 28 (2), 185–191 (2015).CrossRefGoogle Scholar
  10. 10.
    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 μm coherent Doppler lidar,” Opt. Lett. 40 (14), 3408–3411 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    I. N. Smalikho, V. A., Banakh, F. Holzäpfel, and S. Rahm, “Estimation of aircraft wake vortex parameters from array of radial velocities measured by a coherent Doppler lidar,” Opt. Atmos. Okeana 28 (8), 742–750 (2015).Google Scholar
  12. 12.
    I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23 (19), A1194–A1207 (2015).CrossRefGoogle Scholar
  13. 13.
    D. C. Burnham and J. N. Hallock, Chicago monostatic acoustic vortex sensing system. DOT-TSC-FAA-79-103 (U.S. Department of Transportation, 1982).Google Scholar
  14. 14.
    T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerospace Sci. 38, 181–208 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    F. Köpp, S. Rahm, I. N. Smalikho, A. Dolfi, J.-P. Cariou, M. Harris, and R. I. Young, “Comparison of wakevortex parameters measured by pulsed and continuouswave lidars,” J. Aircr. 42 (4), 916–923 (2005).CrossRefGoogle Scholar
  16. 16.
    C. W. Schwarz, K. U. Hahn, and D. Fischenberg, “wake encounter severity assessment based on validated aerodynamic interaction models,” in Proc. AIAA Atmos. Space Environ. Conf., Toronto, Canada, August 2–5, 2010. doi 10.2514/6.2010-7679Google Scholar
  17. 17.
    F. Holzäpfel, “Probabilistic two-phase wake vortex decay and transport model,” J. Aircr. 40 (2), 323–331 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations