Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 502–507 | Cite as

Investigation of the ro-vibrational energy structure of (0101, F1) and (0101, F2) states of the 28SiH4 molecule

  • N. I. Raspopova
Spectroscopy of Ambient Medium

Abstract

An analysis of the high-resolution vibrational-rotational IR spectrum of ν2 + ν4 (F1) and ν2 + ν4 (F2) bending absorption bands of the 28SiH4 molecule is carried out for the first time using the SPHETOM software. Approximately 618 experimental transitions with Jmax = 8 are assigned to ν2 + ν4 (F1) and ν2 + ν4 (F2) bands. Rotational, centrifugal distortion, tetrahedral splitting, and resonance interaction parameters for these vibrational bands are derived from the weighted fit of experimental line positions. The set of parameters obtained reproduces the initial experimental data with an accuracy close to the experimental uncertainties drms = 8 × 10–4 cm–1.

Keywords

bending vibrations overtones tetrahedral splittings resonance interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Pierre, A. Valentin, and L. Henry, “Le niveau de base du silane obtenu a partir de l’etude du spectre a transformee de Fourier de ν2 et ν4,” Can. J. Phys. 62, 254–259 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    G. Pierre, A. Valentin, and L. Henry, “Etude par transformee de fourier, du spectre, du silane dans la region de 1000 cm–1. Analyse de la diade ν2 et ν4,” Can. J. Phys. 64, 341–350 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    H. Prinz, W. A. Kreiner, and G. Pierre, “The silane isotopomers 29SiH4 and 30SiH4 constants of the ν24 dyad,” Can. J. Phys. 68, 551–562 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    H. Prinz, W. A. Kreiner, M. Loete, and J. M. Jouvard, “29SiH4 and 30SiH4: Dipole moment parameters of the ν24 dyad from Stark effect observations with laser sidebands,” J. Mol. Spectrosc. 139, 30–38 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. I. Raspopova, N. V. Kashirina, A. L. Fomchenko, C. Sydow, and S. Bauerecker, “High resolution study of MSiH4 (M = 28, 29, 30) in the dyad region: Analysis of line positions, intensities and half-widths,” J. Quant. Spectrosc. Radiat. Transfer (2017). doi 10.1016/j.jqsrt.2017.03.020Google Scholar
  6. 6.
    A. Cabana, D. L. Gray, I. Mills, and A. G. Robiette, “Vibration-rotation coupling between ν1 and ν3 in SiH4,” J. Mol. Spectrosc. 66, 174–176 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    A. Cabana, D. L. Gray, A. G. Robiette, and G. Pierre, “Analysis of the ν3 and ν1 infra-red bands of SiH4,” Mol. Phys. 36, 1503–1516 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    W. D. Allen and H. F. Schaefer, “Geometrical structures, force constants, and vibrational spectra of SiH, SiH2, SiH3, and SiH4,” Chem. Phys. 108, 243–274 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Chuprov, P. G. Sennikov, K. G. Tokhadze, S. K. Ignatov, and O. Schrems, “High resolution Fourier- transform IR spectroscopic determination of impurities in silicon tetrafluoride and silane prepared from it,” Inorg. Mater. 42, 924–931 (2006).CrossRefGoogle Scholar
  10. 10.
    A. L. Cochran, “Solar system science enabled with the next generation space telescope,” Sci. NGST ASP Conf. Ser. 133, 188–197 (1998).ADSGoogle Scholar
  11. 11.
    J. D. Monnier, W. C. Danchi, D. S. Hale, P. G. Tuthill, and C. H. Townes, “Mid-infrared interferometry on spectral lines. III. Ammonia and silane around IRC + 10216 and VY canis majoris,” Astrophys. J. 543, 868–879 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. I. Raspopova, P. G. Sennikov, M. A. Koshelev, I. A. Velmuzhova, A. P. Velmuzhov, and A. D. Bulanov, “High resolution study of MGeH4 (M = 76; 74) in the dyad region,” J. Quant. Spectrosc. Radiat. Transfer 144, 11–26 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Koshelev, A. P. Velmuzhov, I. A. Velmuzhova, P. G. Sennikov, N. I. Raspopova, E. S. Bekhtereva, O. V. Gromova, and O. N. Ulenikov, “High resolution study of strongly interacting ν1(A1)/ν3(F2) bands of MGeH4 (M = 76; 74),” J. Quant. Spectrosc. Radiat. Transfer 164, 161–174 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. I. Raspopova, A. L. Fomchenko, P. G. Sennikov, M. A. Koshelev, I. A. Velmuzhova, and A. P. Velmuzhov, “First high resolution ro-vibrational study of the (0200), (0101) and (0002) vibrational states of MGeH4 (M = 76, 74),” J. Quant. Spectrosc. Radiat. Transfer 182, 199–218 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    J.-J. Zheng, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S.-G. He, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High resolution vibrationrotation spectrum of the D2O molecule in the region near the 2ν1 + ν2 + ν3 absorption band,” Mol. Phys. 99, 931–937 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, O. V. Gromova, L.-Y. Hao, and S.-M. Hu, “On the study of high-resolution rovibrational spectrum of H2S in the Region of 7300–7900 cm–1,” J. Mol. Spectrosc. 226, 57–70 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, I. B. Bolotova, I. A. Konov, V.-M. Horneman, and C. Leroy, “High resolution analysis of the SO2 spectrum in the 2600–2900 cm–1 region: 2ν3, ν2 + 2ν3–ν2 and 2ν1 + ν2 bands,” J. Quant. Spectrosc. Radiat. Transfer 113, 500–517 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    O. N. Ulenikov, S.-M. Hu, E. S. Bekhtereva, G. A. Onopenko, S.-G. He, X.-H. Wang, J.-J. Zheng, and Q.-S. Zhu, “High-resolution fourier transform spectrum of D2O in the region near 0.97 μm,” J. Mol. Spectrosc. 210, 18–27 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    A. D. Bykov, Yu. S. Makushkin, and O. N. Ulenikov, “The vibrational analysis of H2 16O,” J. Mol. Spectrosc. 99, 221–227 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    O. N. Ulenikov, S.-G. He, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution study of the (ν1 + 12ν2 + ν3 = 3) polyad of strongly interacting vibrational bands of D2O,” J. Mol. Spectrosc. 204, 216–225 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    O. N. Ulenikov, A. B. Malikova, S. Alanko, M. Koivusari, and R. Anttila, “High-resolution study of the 2ν5 hybrid band of the CHD3 molecule,” J. Mol. Spectrosc. 179, 175–194 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    O. N. Ulenikov, F.-G. Sun, X.-G. Wang, and Q.-S. Zhu, “High resolution spectroscopic study of arsine: 3ν1 and 2ν1 + ν3 dyad: The tendency of symmetry reduction,” J. Chem. Phys. 105, 7310–7315 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    O. N. Ulenikov, E. S. Bekhtereva, S. Albert, S. Bauerecker, H. M. Niederer, and M. Quack, “Survey of the high resolution infrared spectrum of methane (12CH4 and 13CH4): Partial vibrational assignment extended towards 12000 cm–1,” J. Chem. Phys. 141, 234302 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    O. N. Ulenikov, E. S. Bekhtereva, C. Leroy, and A. L. Fomchenko, “On the "expanded local mode” approach applied to the methane molecule,” J. Mol. Spectrosc. 264, 61–65 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    O. N. Ulenikov, E. S. Bekhtereva, S. V. Grebneva, H. Hollenstein, and M. Quack, “High-resolution rovibrational analysis of vibrational states of A2 symmetry of the deuterated methane CH2D2: The levels ν5 and ν7 + ν9,” Mol. Phys. 104, 3371–3386 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    S.-G. He, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution fourier transform spectrum of the D2O Molecule in the region of the second triad of interacting vibrational states,” J. Mol. Spectrosc. 200, 34–39 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    O. N. Ulenikov and G. A. Ushakova, “Analysis of H2O molecule second hexade interacting vibrational states,” J. Mol. Spectrosc. 117, 195–205 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    A. D. Bykov, V. P. Lopasov, Yu. S. Makushkin, L. N. Sinitsa, O. N. Ulenikov, and V. E. Zuev, “Rotation- vibration spectra of deuterated water vapor in the 9160-9390 cm–1 region,” J. Mol. Spectrosc. 94, 1–27 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Y. S. Aslapovskaya, A. G. Ziatkova, C. Sydow, C. Maul, and S. Bauerecker, “First high resolution study of the interacting ν8 + ν10, ν6 + ν10, ν6 + ν7 bands and re-analysis of the ν7 + ν8 band of trans-d2-ethylene,” J. Quant. Spectrosc. Radiat. Transfer 184, 76–88 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations