Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 517–526 | Cite as

Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements

  • V. S. Rakitin
  • N. F. Elansky
  • N. V. Pankratova
  • A. I. Skorokhod
  • A. V. Dzhola
  • Yu. A. Shtabkin
  • P. Wang
  • G. Wang
  • A. V. Vasilieva
  • M. V. Makarova
  • E. I. Grechko
Atmospheric Radiation, Optical Weather, and Climate


Trends of total CO and CH4 contents are estimated from satellite AIRS spectrometer data for the Eurasian domain (0–180° E, 0–85° N) for different time periods and seasons. The results are compared with similar estimates, obtained from ground-based spectroscopic measurements at seven stations of the European Network for the Detection of Atmospheric Composition Change (NDACC) and at measurement sites of the Institute of Atmospheric Physics, Russian Academy of Sciences (Zvenigorod Scientific Station (ZSS), Zotto, and Beijing) and St. Petersburg University (Peterhof), located in the study domain. Overall, the total CO decreased over northern Eurasia during the period of 2003–2015 at a rate of 0.05–1.5%/yr, depending on the region; while the total CH4 increased at a rate of 0.16–0.65%/yr. Since 2007, the total CO has been increased during summer and autumn months in most mid- and high-latitude Eurasian background regions, and the total CH4 growth has been accelerated. Changes in the global photochemical system, proceeding against the background of global climate change and, in particular, changes in the “sources/sinks” ratio for minor atmospheric admixtures are suggested as possible causes of this dynamic of trends of the atmospheric CO and CH4 contents.


carbon monoxide methane total admixture content atmospheric spectroscopy satellite methods background and polluted areas trends 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Climate Change 2013: The Physical Science Basis, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (IPCC, Cambridge; New York, 2013).Google Scholar
  2. 2.
    M. Pommier, C. A. McLinden, and M. Deeter, “Relative changes in CO emissions over megacities based on observations from space,” Geophys. Rev. Lett. 40, 1–6 (2013).CrossRefGoogle Scholar
  3. 3.
    E. Dlugokencky, A. Crotwell, K. Masarie, J. White, P. Lang, and M. Crotwell, “NOAA measurements of long lived greenhouse gases,” Asia-Pacific GAW Greenhouse Gases. Newslett. 4, 6–9 (2013).Google Scholar
  4. 4.
    WMO/IGAC Impacts of Megacities on Air Pollution and Climate. Rep. No. 205 (WMO, Geneva, 2012).Google Scholar
  5. 5.
    P. C. Novelli, K. A. Masarie, and P. M. Lang, “Distributions and recent changes in carbon monoxide in the lower troposphere,” J. Geophys. Res. 103 (19), 015–033 (1998).Google Scholar
  6. 6.
    A. M. Thompson and R. J. Cicerone, “Possible perturbations to atmospheric CO, CH4, and OH,” J. Geophys. Res., D 91 (10), 10853–10864 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    D. Wunch, P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, “Emissions of greenhouse gases from a north american megacity,” Geophys. Rev. Lett. 36 (2009).Google Scholar
  8. 8.
    G. S. Golitsyn, E. I. Grechko, G. Ch. Wang, P. S. Wang, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv. Atmos. Ocean. Phys. 51 (1), 1–11 (2015).CrossRefGoogle Scholar
  9. 9.
    M. A. K. Khalil, J. P. Pinto, and M. J. Shearer, “Preface atmospheric carbon monoxide,” Chemosphere: Global Change Sci. 1 (1–3), 1–375 (1999).Google Scholar
  10. 10.
    G. Bras’e and S. Solomon, Aeronomy of the Middle Atmosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  11. 11.
    L. N. Yurganov, P. Duchatelet, A. V. Dzhola, D. P. Edwards, F. Hase, I. Kramer, E. Mahieu, J. Mellqvist, J. Notholt, P. C. Novelli, A. Rockmann, H. E. Scheel, M. Schneider, A. Schulz, A. Strandberg, R. Sussmann, H. Tanimoto, V. Velazco, J. R. Drummond, and J. C. Gille, “Increased Northern hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space,” Atmos. Chem. Phys. 5 (2), 563–573 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    P. Hausmann, R. Sussmann, and D. Smale, “Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): Top-down estimate from ethane and methane column observations,” Atmos. Chem. Phys. 16, 3227–3244 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    P. Bousquet, B. Ringeval, I. E. J. Pison, E.-G. Brunke, C. Carouge, F. Chevallier, A. Fortems-Cheiney, C. Frankenberg, D. A. Hauglustaine, P. B. Krummel, R. L. Langenfelds, M. Ramonet, M. Schmidt, L. P. Steele, S. Szopa, C. Yver, N. Viovy, and P. Ciais, “Source attribution of the changes in atmospheric methane for 2006–2008,” Atmos. Chem. Phys. 11, 3689–3700 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron- Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quere, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, “Three decades of global methane sources and sinks,” Nat. Geosci. 6, 813–823 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and groundbased CO total column observations over over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925–7942 (2011). doi 10.5194/acp-11-7925-2011ADSCrossRefGoogle Scholar
  16. 16.
    V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, “Variations of the total content of carbon monoxide over Moscow megapolis,” Izv. Atmos. Ocean. Phys. 47 (1), 59–66 (2011).CrossRefGoogle Scholar
  17. 17.
    P. Wang, N. F. Elansky, Yu. M. Timofeev, Gengchen Wang, G. S. Golitsyn, M. V. Makarova, V. S. Rakitin, Yu. A. Stabkin, A. I. Skorokhod, E. I. Grechko, E. V. Fokeeva, and A. N. Safronov, “A study of the long-term trends of CO total column for urban and background regions using ground-based and satellite spectroscopic measurements,” Adv. Atmos. Sci. (2017) (in press).Google Scholar
  18. 18.
    G. R. Van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Vasileva and K. B. Moiseenko, “Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data,” Atmos. Environ. 71, 115–121 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    V. I. Dianov-Klokov, L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Spectroscopic measurements of atmospheric carbon monoxide and methane. 1. Latitudinal distribution,” J. Atmos. Chem. 8 (2), 139–151 (1989).CrossRefGoogle Scholar
  21. 21.
    M. V. Makarova, A. V. Poberovskii, and S. I. Osipov, “Time variations of the total CO content in the atmosphere near St. Petersburg,” Izv. Atmos. Ocean. Phys. 47 (6), 739–746 (2011).CrossRefGoogle Scholar
  22. 22.
    N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeyev, “Comparisons of CH4 groundbased FTIR measurements near Saint-Petersburg with GOSAT observations,” Atmos. Meas. Technol. 7, 1003–1010 (2014).CrossRefGoogle Scholar
  23. 23.
    E. Sepulveda, M. Schneider, F. Hase, S. Barthlott, D. Dubravica, O. E. Garcia, A. Gomez-Pelaez, Y. Gonzalez, J. C. Guerra, M. Gisi, R. Kohlhepp, S. Dohe, T. Blumenstock, K. Strong, D. Weaver, M. Palm, A. Sadeghi, N. M. Deutscher, T. Warneke, J.Notholt, N. Jones, D. W. T. Griffith, D. Smale, G. W. Brailsford, J. Robinson, F. Meinhardt, M. Steinbacher, T. Aalto, and D. Worth, “Tropospheric CH4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements,” Atmos. Meas. Technol. 7, 2337–2360 (2014).CrossRefGoogle Scholar
  24. 24.
    F. V. Kashin, N. E. Kamenogradskii, E. I. Grechko, A. V. Dzhola, A. V. Poberovskii, and M. A. Makarova, “Comparisons of different methods of ground-based spectroscopic measurements of the total methane content in the atmosphere,” Izv. Atmos. Ocean. Phys. 37 (3), 314–319 (2001).Google Scholar
  25. 25.
    H. H. Aumann, M. T. Chahine, C. Gautier, M. Goldberg, E. Kalnay, L. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. Staelin, L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products and processing systems,” IEEE Trans. Geosci. Remote Sens. 41 (2), 253–264 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    W. W. McMillan, K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, “AIRS V5 CO retrieval with DACOM in situ measurements,” IEEE Trans. Geosci. Remote Sens. 49, 1–12 (2011).CrossRefGoogle Scholar
  27. 27.
    AIRS/AMSU/HSB Version 6 Level 2, Product User Guide. Guide.pdf.Google Scholar
  28. 28.
    V. S. Rakitin, Yu. A. Shtabkin, N. F. Elanskii, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Ocean. Opt. 28 (6), 816–824 (2015).CrossRefGoogle Scholar
  29. 29.
    R. L. Thompson, A. Stohl, Myhre C. Lund, M. Sasakawa, T. Machida, T. Aalto, E. Dlugokencky, D. Worthy, and A. Skorokhod, “Methane fluxes in the high northern latitudes estimated using a Bayesian atmospheric inversion,” Geophys. Res. Abstr. 18 (2016). doi 10.5194/acp-17-3553-2017Google Scholar
  30. 30. Scholar
  31. 31.
    Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D.B.A. Jones, A. F. Arellano, and D. K. Henze, “A fifteen year record of CO emissions constrained by MOPITT CO observations,” Atmos. Chem. Phys. Discuss. (2016). doi 10.5194/acp-2016-811Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Rakitin
    • 1
  • N. F. Elansky
    • 1
  • N. V. Pankratova
    • 1
  • A. I. Skorokhod
    • 1
  • A. V. Dzhola
    • 1
  • Yu. A. Shtabkin
    • 1
  • P. Wang
    • 2
  • G. Wang
    • 2
  • A. V. Vasilieva
    • 1
  • M. V. Makarova
    • 3
  • E. I. Grechko
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.St. Petersburg State UniversityPeterhofRussia

Personalised recommendations