Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 508–516 | Cite as

Optical characteristics of irregular atmospheric ice columns

Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • 16 Downloads

Abstract

The study of cirrus clouds, which significantly affect the climate, is carried out using lidars. Interpretation of the lidar data is based on the direct solution of the problem of light scattering by particles of crystal clouds. Optical characteristics of perfect ice hexagonal columns, obtained previously, poorly agree with the lidar observation results. The work describes calculations of the optical characteristics of irregular hexagonal ice columns, which are in a good agreement with the experimental results. The calculations for particles with deformation of a dihedral angle of 90° are presented. It is shown that the logarithm of the scattering matrix can be linearly approximated well by the logarithm of the particle size. This can significantly accelerate the calculations of the optical characteristics of clouds. It is ascertained that the optical characteristics are in a good agreement with the lidar observation results throughout the range of sizes calculated even at deformation angles of a few degrees.

Keywords

irregular ice columns cirrus clouds physical optics light scattering ice crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Liou, “Influence of Cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather. Rev. 114 (6), 1167–1199 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47 (14), 1742–1754 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: A way forward,” Atmos. Res. 112, 45–69 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    P. Wendling, R. Wendling, and H. K. Weickmann, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18 (15), 2663–2671 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Kuz’min and A. V. Dikinis, “Integrated use of remote sensing and ground-based observation data and numerical weather forecasts in automated runoff forecasting,” Uchen. Zapiski Ros. Gos. Gidrometeorol. Univ. 22 (22), 16–27 (2011).Google Scholar
  7. 7.
    S. A. Soldatenko, A. V. Tertyshnikov, and N. V. Shirshov, “The impact estimate of satellite information on the quality of numerical weather prediction,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (4), 38–47 (2015).Google Scholar
  8. 8.
    E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (University Press, Cambridge, 2002).CrossRefGoogle Scholar
  9. 9.
    A. J. Baran, “A review of the light scattering properties of cirrus,” J. Quant. Spectrosc. Radiat. Transfer 110 (14–16), 1239–1260 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds,” Opt. Lett. 39 (19), 5788–5791 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Samokhvalov, I. D. Bryukhanov, S. V. Nasonov, I. V. Zhivotenyuk, and A. P. Stykon, “Investigation of the optical characteristics of cirrus clouds with anomalous backscatterring,” Rus. Phys. J. 55 (8), 925–929 (2013).CrossRefGoogle Scholar
  13. 13.
    K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Rev. Lett. 39 (20), L20805 (2012). doi 10.1029/2012GL053116ADSCrossRefGoogle Scholar
  14. 14.
    I. V. Samokhvalov, S. M. Bobrovnikov, P. P. Geiko, A. V. El’nikov, and B. V. Kaul’, “Development of Tomsk State University lidar as a unique complex for atmospheric monitoring,” Atmos. Ocean. Opt. 19 (11), 895–898 (2006).Google Scholar
  15. 15.
    B. V. Kaul’, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics SB RAS, Tomsk, 2004).Google Scholar
  16. 16.
    B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Okean. Opt. 16 (4), 325–332 (2003).Google Scholar
  17. 17.
    D. N. Romashov, B. V. Kaul’, and I. V. Samokhvalov, “Data bank for interpreting results of polarization sensing of crystalline clouds,” Atmos. Okean. Opt. 13 (9), 794–800 (2000).Google Scholar
  18. 18.
    I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A.G. Borovoi, B. V. Kaul’, N. V. Kustova, and A. V. Konoshonkin, “The analysis of the backscattering matrix for cirrus clouds with anomalous backscattering,” Izv. Vyssh. Ucheb. Zaved., Fiz. 56 (8/3), 281–283 (2013).Google Scholar
  19. 19.
    A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015).Google Scholar
  20. 20.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).CrossRefGoogle Scholar
  22. 22.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).CrossRefGoogle Scholar
  23. 23.
    A. Konoshonkin, N. Kustova, and A. Borovoi, “Beamsplitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasihorizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24566–24573 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particles,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).Google Scholar
  27. 27.
    A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Express 23 (19), 24557–24571 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115 (32), D00 (2010). doi 10.1029/2009JD012334Google Scholar
  30. 30.
    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51 (6), 817–832 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    V. Wolf, J. Reichardt, U. Gorsdorf, A. Reigert, R. Leinweber, and V. Lehmann, “Synergy between groundbased remote sensing systems in microphysical analysis of cirrus clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 9246, 92460K (2014). doi 10.1117/12.2065674ADSGoogle Scholar
  32. 32.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystalline Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  33. 33.
    http://sky.iao.ru/Google Scholar
  34. 34.
    A. M. Morozov, V. P. Galileiskii, A. I. Elizarov, and D. V. Kokarev, “Observation of the mirror reflection of lighted underlying surface by a cloudy layer of ice plates,” Opt. Atmos. Okeana 30 (1), 88–92 (2017).Google Scholar
  35. 35.
    A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, Y. Grynko, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods,” J. Quant. Spectrosc. Radiat. Transfer 182, 12–23 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, H. Okamoto, H. Ishimoto, Y. Grynko, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer (2017). doi 10.1016/j.jqsrt.2016.12.024Google Scholar
  37. 37.
    K. V. Mardia, Statistics of Directional Data (Academic, New York, 1972).MATHGoogle Scholar
  38. 38.
    D. L. Mitchell, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics,” J. Atmos. Sci. 51 (6), 797–816 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).ADSCrossRefGoogle Scholar
  40. 40.
    K. Sato and H. Okamoto, “Characterization of Ze and LDR of non-spherical and inhomogeneous ice particles for 95-ghz cloud radar: Its application to microphysical retrievals,” J. Geophys. Res., D 111, 22213 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for salving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Ocean. Opt. 29 (3), 252–262 (2016).CrossRefGoogle Scholar
  42. 42.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38 (9), 1485–1487 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    Z. Wang, A. Borovoi, D. Liu, Z. Tao, C. Ji, C. Xie, B. Wang, Z. Zhong, and Y. Wang, “Properties of cirrus cloud by a three wavelength Raman Mie polarization lidar: Observation and model match,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100352 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations