Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 495–501 | Cite as

Effective parameterizations of biologically active UV radiation absorption by atmospheric ozone

Spectroscopy of Ambient Medium
  • 13 Downloads

Abstract

A method for parameterization of the UV radiation absorption by atmospheric ozone is described. Parameterizations are suggested for computer simulation of tropospheric fluxes of UV–A and UV–B radiations and modified fluxes of biologically active UV radiation in medical applications (for the analysis of vitamin D formation and risk of erythema, cancer, and cataract). The parameterizations allow the solution of the UV radiation transfer equations at a single effective spectral point for obtaining integral fluxes in the 280–400 nm range (taking into account the spectral factors characterizing biological effects). When using the parameterizations, the characteristic errors in the calculations of the fluxes in a clear and cloudy troposphere are ~3–5%. The use of these parameterizations is relevant for fast radiation models, for example, on-line simulation of UV radiation fluxes for medical purposes. This method can be used to improve the accuracy of radiation codes in general atmospheric circulation models, radiation-chemical models, etc.

Keywords

UV radiation ozone absorption radiation models medical applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Juzeniene, P. Brekke, A. Dahlback, S. Andersson-Engels, J. Reichrath, K. Moan, M. F. Holick, W. Grant, and J. Moan, “Solar radiation and human health,” Rep. Prog. Phys. 74 (6), 1–56 (2011).CrossRefGoogle Scholar
  2. 2.
    N. Chubarova, Y. Zhdanova, and Y. Nezval, “A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia,” Atmos. Chem. Phys. 16, 11867–11881 (2016). doi 10.5194/acp-16-11867-2016ADSCrossRefGoogle Scholar
  3. 3.
    T. Sukhodolov, E. Rozanov, W. Ball, A. Bais, K. Tourpali, A. Shapiro, P. Telford, S. Smyshlyaev, B. Fomin, R. Sander, S. Bossay, S. Bekki, M. Marchand, M. Chipperfield, S. Dhomse, J. Haigh, T. Peter, and W. Schmutz, “Evaluation of the simulated photolysis rates and their response to solar irradiance variability,” J. Geophys. Res. Atmos., D 121 (10), 6066–6084 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    S. Madronich and S. Flocke, “Theoretical estimation of biologically effective UV radiation at the Earth’s,” in Solar Ultraviolet Radiation-Modeling, Measurements and Effects Surface, Ed. by S. Zerefos and A.F. Bais (Springer, 1997), vol. 52, p. 23–48.CrossRefGoogle Scholar
  5. 5.
    K. N. Liou, An Introduction to Atmospheric Radiation. Vol. 84 (Academic Press, Boston, 2002), 2nd ed.Google Scholar
  6. 6.
    M. Hess and P. Koepke, “Modelling UV irradiance on arbitrary oriented surfaces: Effect of sky obstructions,” Atmos. Chem. Phys. 8, 3583–3591 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    V. Ambartsumian, “The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars,” Publ. Obs. Astron. Univ. Leningrad 6, 7–18 (1936).Google Scholar
  8. 8.
    A. A. Lacis and V. Oinas, “A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res., D 96 (5), 9027–9063 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    B. A. Fomin and M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res., D 110 (2) (2005).Google Scholar
  10. 10.
    R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, and J. S. Garing, Optical Properties of the Atmosphere (Air Force Research Laboratories, Cambridge, 1971).CrossRefGoogle Scholar
  11. 11.
    L. T. Molina and M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res., D 91 (13), 14501–14508 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    Erythema reference action spectrum and standard erythema dose. Joint ISO/CIE Standard. ISO 17166:1999/CIE S007-1998.Google Scholar
  13. 13.
    H. J. C. M. Sterenborg, C. M. Thomsen, S. L. Jacques, and M. Motamedi, “In vivo autofluorescence of an unpigmented melanoma in mice. correlation of spectroscopic properties to microscopic structure,” Melanoma Res. 5 (4), 211–216 (1995).CrossRefGoogle Scholar
  14. 14.
    R. B. Setlow, E. Grist, K. Thompson, and A. D. Woodhead, “Wavelength effective in induction of malignant melanoma,” Proc. Natl. Acad. Sci., USA 90 (14), 6666–6670 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, and J. C. van der Leun, “Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice,” Cancer Res. 53 (1), 53–60 (1993).Google Scholar
  16. 16.
    R. Boulion, J. Eisman, M. Garabedian, M. Holick, J. Kleinschmidt, T. Suda, I. Terentskaya, and A. Webb, “Action spectrum for production of previtamin D3 in human skin,” in Technical Report 174 (CIE, Vienna, 2006).Google Scholar
  17. 17.
    O. M. Oriowo, A. P. Cullen, B. R. Chou, and J. G. Sivak, “Action spectrum and recovery for in vitro UV-induced cataract using whole lenses,” Invest. Ophtalmol. Vis. Sci. 42, 2596–2602 (2001).Google Scholar
  18. 18.
    C. Daubeny, “On the action of light upon plants, and of plants upon the atmosphere,” Philos. Trans. R. Soc. London 126, 149–175 (1836).CrossRefGoogle Scholar
  19. 19.
    B. A. Fomin and I. P. Mazin, “Model for an investigation of radiative transfer in cloudy atmosphere,” Atmos. Res. 47–48, 127–153 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Central Aerological ObservatoryDolgoprudniyRussia

Personalised recommendations