Skip to main content

Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect


We present experimental results on the remote detection of surface traces of some high-energy materials using a Raman lidar designed on the basis of an excimer KrF laser with a narrow generation line and a multichannel spectrum analyzer based on diffraction a spectrograph and time-gated ICCD camera. The sensitivity of the system is evaluated for a detection range of 10 m. A detection limit is attained for the traces of nitrogen-containing chemical materials with a surface density of 0.5 μg/cm2 at a signal accumulation of over 1000 laser pulses.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Russ. Phys. J. 58 (9), 1217–1225 (2016).

    Article  Google Scholar 

  2. 2.

    C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laserinduced fluorescence,” Opt. Express 18 (6), 5399–5406 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 20°C: A unique scheme for remote detection of explosives,” Appl. Opt. 40 (36), 6677–6681 (2001).

    ADS  Article  Google Scholar 

  4. 4.

    L. A. Skvortsov, Laser Techniques for the Remote Detection of Chemical Compounds on Body’s Surface (Tekhnosfera, Moscow, 2014) [in Russian].

    Google Scholar 

  5. 5.

    B. G. Ageev, A. V. Klimkin, A. N. Kuryak, K. Yu. Osipov, and Yu. N. Ponomarev, “Remote detector of hazardous substances based on a tunable 13C16O2 laser,” Atmos. Ocean. Opt. 30 (3), 204–208 (2017).

    Google Scholar 

  6. 6.

    B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, and D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4 (1), 447–472 (1986).

    Article  Google Scholar 

  7. 7.

    G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. H. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).

    ADS  Article  Google Scholar 

  8. 8.

    R. Chirico, S. Almaviva, F. Colao, L. Fiorani, M. Nuvoli, D. Murra, I. Menicucci, F. Angelini, and A. Palucci, “Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications,” Sensors 16 (1), 1–18 (2016).

    Article  Google Scholar 

  9. 9.

    S. Bobrovnikov, E. Gorlov, and V. Zharkov, “Simulation of the Raman lidar signal for localized source of atmospheric pollution,” Proc. SPIE 9292, 9292–48 (2014).

    ADS  Google Scholar 

  10. 10.

    M. D. Ray and A. J. Sedlacek, “Ultraviolet mini- Raman lidar for stand-off, in-situ identification of chemical surface contaminants,” Rev. Sci. Inst. 71 (9), 3485–3489 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    J. S. Arthur, D. R. Mark, N. S. Higdon, and D. A. Richter, “Short-range, non-contact detection of surface contamination using Raman lidar,” Proc. SPIE 4577, 95–104 (2001).

    Google Scholar 

  12. 12.

    GOST 31581-2012 “Laser Safety. General Safety Requirements during the Design and Use of Laser Devices” (Standartinform, Moscow, 2013) [ in Russian].

  13. 13.

    American National Standard for safe use of lasers ANSI 136.1-2000 (Laser Institute of America, 2000).

  14. 14.

    S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, “Experimental estimation of the sensitivity of the UV Raman lidar,” Atmos. Ocean. Opt. 26 (4), 320–325 (2013).

    Article  Google Scholar 

  15. 15.

    J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59 (6), 769–775 (2005).

    ADS  Article  Google Scholar 

  16. 16.

    P. Jander and R. Noll, “Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy,” Appl. Spectrosc. 63 (5), 559–563 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    J. Moros, J. A. Lorenzo, K. Novotny, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44 (1), 121–130 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Ostmark, “Near real time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants, Explos., Pyrotech. 34 (4), 297–306 (2009).

    Article  Google Scholar 

  19. 19.

    A. Pettersson, S. Wallin, H. Ostmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection,” Proc. SPIE 7664, 76641 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    R. Forest, F. Babin, D. Gay, N. Ho, O. Pancrati, S. Deblois, S. Desilets, and J. Maheux, “Use of a spectroscopic lidar for standoff explosives detection through Raman spectra,” Proc. SPIE 8358, 83580 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Y. N. Panchenko, M. V. Andreev, V. V. Dudarev, N. G. Ivanov, A. V. Pavlinskii, A. V. Puchikin, S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and V. F. Losev, “Narrow-band tunable laser for a lidar facility,” Russ. Phys. J. 55 (6), 609–615 (2012).

    Article  Google Scholar 

  22. 22.

    T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro- Raman spectroscopy,” Opt. Mater. Express 3 (6), 755–764 (2013).

    Article  Google Scholar 

  23. 23.

    M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30 (11), 1739–1746 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Laser Monitoring of the Atmosphere, Ed. by E.D. Hinkley (Springer, Berlin; Heidelberg; New York, 1976).

Download references

Author information



Corresponding author

Correspondence to S. M. Bobrovnikov.

Additional information

Original Russian Text © S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, S.M., Gorlov, E.V. & Zharkov, V.I. Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect. Atmos Ocean Opt 30, 604–608 (2017).

Download citation


  • lidar
  • Raman scattering
  • remote detection
  • high-energy materials