Atmospheric and Oceanic Optics

, Volume 30, Issue 6, pp 527–532 | Cite as

Photophoresis of fractal-like soot aggregates: Microphysical model, comparison with experiment, and possible atmospheric manifestations

  • S. A. Beresnev
  • M. S. Vasil’eva
  • V. I. Gryazin
  • L. B. Kochneva
Atmospheric Radiation, Optical Weather, and Climate
  • 8 Downloads

Abstract

A microphysical model describing the photophoretic motion of soot aggregates with allowance for their fractal structure is presented. The comparison with known experimental data has been performed and their good qualitative and quantitative agreement has been found. The calculated characteristics of the motion of fractal-like soot aggregates in the atmospheric radiation field are presented. It is shown that photophoretic effects for soot aerosol under conditions of a steady-state atmosphere in the model for fractal-like particles manifest themselves most significantly at heights of the upper troposphere and middle stratosphere.

Keywords

soot aerosol photophoresis fractal-like particles stratosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids., A 5 (8), 2043–2052 (1993).ADSCrossRefMATHGoogle Scholar
  2. 2.
    S. A. Beresnev and L. B. Kochneva, “Radiation absorption asymmetry factor and photophoresis of aerosols,” Atmos. Ocean. Opt. 16 (2), 119–126 (2003).Google Scholar
  3. 3.
    F. D. Kovalev, Candidate’s Dissertation in Mathematics and Physics (Yekaterinburg State University, Yekaterinburg, 2003).Google Scholar
  4. 4.
    V. V. Karasev, N. A. Ivanova, A. R. Sadykova, N. Kukhareva, A. M. Baklanov, A. A. Onischuk, F. D. Kovalev, and S. A. Beresnev, “Formation of charged soot aggregates by combustion and pyrolysis: Charge distribution and photophoresis,” J. Aerosol Sci. 35 (3), 363–381 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Beresnev, L. B. Kochneva, T. B. Zhuravleva, and K. M. Firsov, “Photophoretic motion of soot aerosol in field of shortwave solar radiation,” Atm. Ocean. Opt. 25 (4), 286–291 (2012).CrossRefGoogle Scholar
  6. 6.
    S. A. Beresnev, L. B. Kochneva, V. I. Zakharov, and K. G. Gribanov, “Photophoresis of soot aerosol in the Earth thermal radiation field,” Opt. Atmos. Okeana 24 (7), 597–600 (2011).Google Scholar
  7. 7.
    S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol. 23 (2), 109–120 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Beresnev, M. S. Vasiljeva, V. I. Gryazin, and L. B. Kochneva, “Photophoretic motion of fractal-like soot aggregates: Experiment and theory comparison,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, Paper No. 92920Z (2014).Google Scholar
  9. 9.
    C. M. Sorensen, “The mobility of fractal aggregates: A review,” Aerosol Sci. Technol. 45, 765–779 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. Roy. Soc. Lond., A 430, 577–591 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: Experiment and effective medium approximations,” Appl. Opt. 27 (12), 2396–2404 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transfer 51, 1431–1438 (2008).CrossRefMATHGoogle Scholar
  13. 13.
    C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81 (10), 6692–6699 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    Heat Conductivity of Solid Bodies: Reference Book, Ed. by A.S. Okhotin (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  15. 15.
    S. A. Beresnev, M. S. Vasiljeva, V. I. Gryazin, and L. B. Kochneva, “Modeling of microphysical characteristics for fractal-like soot aggregates: The effective heat conductivity,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (2015). doi 10.117/12.2205019Google Scholar
  16. 16.
    S. A. Beresnev, M. S. Vasiljeva, V. I. Gryazin, and L. B. Kochneva, “Photophoresis of fractal-like soot aggregates: Possible atmospheric applications,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, Paper No. 10035-62 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. A. Beresnev
    • 1
  • M. S. Vasil’eva
    • 1
  • V. I. Gryazin
    • 1
  • L. B. Kochneva
    • 1
  1. 1.Institute of Natural Sciences and MathematicsUral Federal UniversityYekaterinburgRussia

Personalised recommendations