Remote sounding and mesoscale synoptic models in studying the urban boundary layer

Abstract

We analyze how remote sounding instruments can help to improve our understanding of the atmospheric boundary layer and how regional synoptic models can be used as a hindcasting tool in studying and perfecting boundary layer models. A method is suggested for estimating the quality of boundary layer reproduction in these models using remote sensing data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. H. Murphy, “Skill scores based on the mean square error and their relationships to the correlation coefficient,” Mon. Weather. Rev. 116 (12), 2417–2424 (1988).

    ADS  Article  Google Scholar 

  2. 2.

    D. R. Stauffer and N. L. Seaman, “Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data,” Mon. Weather. Rev. 118 (6), 1250–1277 (1990).

    ADS  Article  Google Scholar 

  3. 3.

    T. R. Oke, Boundary layer climates (Routledge, 2002).

    Google Scholar 

  4. 4.

    F. Chen, H. Kusaka, M. Tewari, J. W. Bao, and H. Hirakuchi, “Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area,” in Fifth Sympos. Urban Environ. 2004, pp. 9–11.

    Google Scholar 

  5. 5.

    Y. Chen, W. M. Jiang, N. Zhang, X. F. He, and R. W. Zhou, “Numerical simulation of the anthropogenic heat effect on urban boundary layer structure,” Theor. Appl. Climatol. 97 (1–2), 123–134 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    S. H. Lee, S. W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, “Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign,” Atmos. Chem. Phys. 11 (5), 2127–2143 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    K. Trusilova, S. Schubert, H. Wouters, B. Fruh, S. Grossman-Clarke, M. Demuzere, and P. Becker, “The urban land use in the COSMO-CLM model: A comparison of three parameterizations for Berlin,” Meteorol. Z. 25 (2), 231–244 (2016).

    Article  Google Scholar 

  8. 8.

    W. Tao, J. Liu, G. A. Ban-Weiss, D. A. Hauglustaine, L. Zhang, Q. Zhang, and S. Tao, “Effects of urban land expansion on the regional meteorology and air quality of Eastern China,” Atmos. Chem. Phys. 15, 8597–8614 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “Heat island in the boundary air layer over large cities: New results from remote data,” Dokl. Akad. Nauk 385 (4), 541–548 (2002).

    Google Scholar 

  10. 10.

    http://attex.net

  11. 11.

    R. D. Kuznetsov, “LATAN-3 sodar for investigation of the atmospheric boundary layer,” Atmos. Ocean. Opt. 20 (8), 684–687 (2007).

    Google Scholar 

  12. 12.

    M. A. Kallistratova, I. V. Petenko, and E. A. Shurygin, “Sodar researches of the wind velocity field in the lower atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 23 (5), 451–461 (1987).

    Google Scholar 

  13. 13.

    I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana 25 (10), 877–883 (2012).

    Google Scholar 

  14. 14.

    N. L. Byzova, V. N. Ivanov, and M. K. Matskevich, “Measurement of the vortex components in the lower 300-m air layer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32 (3), 323–328 (1996).

    Google Scholar 

  15. 15.

    T. N. Palmer, “Predicting uncertainty in forecasts of weather and climate,” Rep. Prog. Phys. 63 (2), 71–116 (2000).

    ADS  Article  Google Scholar 

  16. 16.

    V.P. Yushkov, “A probabilistic description of atmospheric turbulence,” Moscow Univ. Phys. Bull. 68 (4), 330–337 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    M. A. Kallistratova and R. D. Kouznetsov, “Low-level jets in the Moscow region in summer and winter observed with a sodar network,” Bound.-Lay. Meteorol. 143 (1), 159–175 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    V. P. Yushkov, R. D. Kuznetsov, and M. A. Kallistratova, “Mean wind speed profiles in the ai basin of Moscow,” Rus. Meterol. Hydrol. 33 (10), 624–631 (2008).

    Article  Google Scholar 

  19. 19.

    V. P. Yushkov, “Synoptic fluctuations of wind speed in the atmospheric boundary layer,” Rus. Meterol. Hydrol. 37 (4), 226–234 (2012).

    Article  Google Scholar 

  20. 20.

    V. P. Yushkov, “Estimation of spatial inhomogeneities of thermal stratification in the boundary layer of the Moscow megalopolis from remote sensing,” Atmos. Ocean. Opt. 29 (1), 56–66 (2016).

    Article  Google Scholar 

  21. 21.

    V. P. Yushkov, “What can be measured by the temperature profiler?,” Rus. Meterol. Hydrol. 39 (12), 838–846 (2014).

    Article  Google Scholar 

  22. 22.

    V. P. Yushkov, M. A. Kallistratova, R. D. Kuznetsov, G. A. Kurbatov, and V. F. Kramar, “Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar,” Izv., Atmos. Ocean. Phys. 43 (2), 168–180 (2007).

    Article  Google Scholar 

  23. 23.

    G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, and S. I. Sitanskii, “Moscow heat island in blocking anticyclone in summer,” Dokl. Akad. Nauk 456 (5), 591–595 (2014).

    Google Scholar 

  24. 24.

    A. V. Troitskii, “Remote determination of atmospheric temperature from spectral radiometric measurements in the ?=5-mm line,” Radiophys. Quantum Electron. 29 (8), 670–678 (1986).

    ADS  Article  Google Scholar 

  25. 25.

    A. S. Vyazankin, E. N. Kadygrov, N. F. Mazurin, A. V. Troitskii, and G. N. Shur, “Comparison between data of microwave radiometer and high-altitude meteorological mast during measurements of the temperature profile and structure of its inhomogeneities,” Meteorol. Gidrol. No. 3, 34–44 (2001).

    Google Scholar 

  26. 26.

    S. Crewell and U. Lohnert, “Accuracy of boundary layer temperature profiles,” IEEE Trans. Geosci. Remote Sens. 45 (7), 2195–2201 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    M. D. Tsyrulnikov, “Stochastic modelling of model errors: A simulation study,” Q. J. R. Meteorol. Soc. 131 (613), 3345–3371 (2005).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. P. Yushkov.

Additional information

Original Russian Text © V.P. Yushkov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yushkov, V.P. Remote sounding and mesoscale synoptic models in studying the urban boundary layer. Atmos Ocean Opt 30, 462–474 (2017). https://doi.org/10.1134/S1024856017050165

Download citation

Keywords

  • remote sounding
  • mesoscale model
  • boundary layer
  • megalopolis
  • urban anomaly
  • hindcasting