Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 412–416 | Cite as

Simulation of information transfer through atmospheric channels of scattered laser radiation propagation

  • M. V. TarasenkovEmail author
  • V. V. Belov
  • E. S. Poznakharev
Optical Waves Propagation

Abstract

Results of simulations of the pulse response of an atmospheric optical communication channel on scattered radiation at wavelengths of 0.3, 0.5, and 0.9 μm are considered. The performed analysis shows that the maximum power of the received information signal at base distances of 2–3 km and less between the source and receiving system is reached at λ = 0.3 μm; for longer base distances and low turbidity of the atmosphere, λ = 0.5 μm. The highest maximum power is observed at λ = 0.5 μm under high turbidity of the atmosphere and base distances of 3–10 km. However, if the base distances are longer than 10 km, the maximum of the information signal power is reached at λ = 0.9 μm. For an example of a laser source and receiving system, using calculation results for the pulse reaction of the atmospheric communication channel at λ = 0.5 μm, we estimate the limiting base distance between the source and receiver, as well as the limiting pulse frequency which is not filtered by the communication channel.

Keywords

atmosphere scattered laser radiation bistatic optical communication visible UV- and near-IR wavelength ranges limiting base distances limiting pulse repetition frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Vorontsov, V. V. Dudorov, M. O. Zyryanova, V. V. Kolosov, and G. A. Filimonov, “Bit error rate in free-space optical communication systems with a partially coherent transmitting beam,” Atmos. Ocean. Opt. 26 (3), 185–189 (2013).CrossRefGoogle Scholar
  2. 2.
    S. V. Polyanskii and A. N. Ignatov, “estimation of the length of atmospheric communication channel with a preset coefficient of readiness for Novosibirsk,” Vest. SibGUTI, No. 4, 73–82 (2009).Google Scholar
  3. 3.
    B. V. Poller, A. V. Britvin, B. D. Borisov, Yu. D. Kolomnikov, S. I. Konyaev, A. E. Kusakina, N. A. Shergunova, V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, and V. F. Plyusin, “Characteristics of the energy information model and methods for construction of telecommunication and quantum cryptography laser satellite-communication system,” Problemy Informatiki, No. 1 (18), 69–75 (2013).Google Scholar
  4. 4.
    R. S. Kennedi, “Introduction in the theory of message transfer through optical channels with scattering,” Trudy Inst. Inzhenerov Elektrotekh. Radioelektron. 58 (10), 264–278 (1970).Google Scholar
  5. 5.
    V. N. Pozhidaev, “Selection of wavelengths for overthe- horizon optical communications systems,” Radiotekhn. Elektron. 22 (11), 2265–2271 (1977).ADSGoogle Scholar
  6. 6.
    V. N. Pozhidaev, “Implementation of UV communication lines based on the effects of molecular and aerosol scattering in the atmosphere,” Radiotekhn. Elektron. 22 (10), 2190–2192 (1977).ADSGoogle Scholar
  7. 7.
    D. Haipeng, G. Chen, K. Arun, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27 (9), 1535–1544 (2009).CrossRefGoogle Scholar
  8. 8.
    D. Han, Y. Liu, K. Zhang, P. Luo, and M. Zhang, “Theoretical and experimental research on diversity reception technology in NLOS UV communication system,” Opt. Express. 20 (14), 15833–15842 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single- scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am., A 28 (3), 420–428 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    D. Kedar, “Multiaccess interference in a non-line-ofsight ultraviolet optical wireless sensor network,” Appl. Opt. 46 (23), 5895–5901 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).CrossRefGoogle Scholar
  12. 12.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013,” Atmos. Ocean. Opt. 28 (3), 202–208 (2015).CrossRefGoogle Scholar
  13. 13.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, and V. O. Troitskii, “Over-the-horizon optoelectronic communication systems,” Russ. Phys. J. 57 (7), 202–208 (2014).CrossRefGoogle Scholar
  14. 14.
    V. V. Belov, M. V. Tarasenkov, and V. N. Abramochkin, “Bistatic atmospheric optoelectronic communication systems (field experiments),” Tech. Phys. Lett. 40 (10), 871–874 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Abramochkin, V. V. Belov, Yu. V. Gridnev, A.N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic communication on scattered laser radiation in the atmosphere. Field experiments,” Svetotekhnika (2017) (in print).Google Scholar
  16. 16.
    V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing,” Atmos. Ocean. Opt. 29 (6), 533–540 (2016).CrossRefGoogle Scholar
  17. 17.
    V. V. Belov and M. V. Tarasenkov, “Algorithms for statistical simulation of pulse responses of bistatic communication channels,” in Proc. of Intern, Conf, “Urgent Problems of Computational and Applied Mathematics-2015” devoted to the 90th Anniversary of G. I. Marchuk (Abvei, Novosibirsk: 2015), p. 95–101 [in Russian].Google Scholar
  18. 18.
    V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Theory of Systems in the Dispersion Media Optics (Spektr, Tomsk, 1997) [in Russian].Google Scholar
  19. 19.
    F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7. ARGL-TR-86–0177 (AFB, Hansom MA, 1988).Google Scholar
  20. 20.
    I. I. Anisimova and B. M. Glukhovskoi, Photoelectronic Multipliers (Sov. radio, Moscow, 1974) [in Russian].Google Scholar
  21. 21.
    M. D. Aksenenko and M. L. Baranochnikov, Optical Radiation Detectors (Radio i svyaz', Moscow, 1987) [in Russian].Google Scholar
  22. 22.
    N. A. Soboleva and A. E. Melamid, Photoelectronic Devices (Vyssh. shkola, Moscow, 1974) [in Russian].Google Scholar
  23. 23.
    A. F. Vasil’ev and A. M. Chmutin, Photoelectric Detectors of Radiation (VGU, Volgograd, 2010) [in Russian].Google Scholar
  24. 24.
    N. O. Chechik, S. M. Fainshtein, and T. M. Lifshits, Electronic Multipliers, Ed. by D.V. Zernova (GITLL, Moscow, 1957) [in Russian].Google Scholar
  25. 25.
    M. M. Gurevich, Photometry (Theory, Methods, and Instrumentation) (Energoatomizdat, Leningrad, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Tarasenkov
    • 1
    Email author
  • V. V. Belov
    • 1
    • 2
  • E. S. Poznakharev
    • 1
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations