Line broadening of carbon oxide in the volume of aerogel nanopores

Abstract

Calculations of line broadening and shift of carbon monoxide (CO) molecules confined in nanoporous media are presented. A model is considered in which the line broadenings and shifts are caused by collisions of free CO molecules with walls and adsorbed CO molecules with and without rotational degrees of freedom.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. A. Henderson, “The interaction of water with solid surfaces: Fundamental aspects revisited,” Sur. Sci. Rep. 46 (1–8), 5–308 (2002).

    Google Scholar 

  2. 2.

    T. Ohba and K. Kaneko, “Cluster-associated filling of water molecules in slit-shaped graphitic nanopores,” Mol. Phys. 105 (2–3), 139–145 (2007).

    ADS  Article  Google Scholar 

  3. 3.

    A. V. Raghunathan and N. R. Aluru, “An empirical potential based quasicontinuum theory for structural prediction of water,” J. Chem. Phys. 131 (18), 184703.1–184703.7 (2009).

    Article  Google Scholar 

  4. 4.

    H. Mosaddeghi, S. Alavi, M. H. Kowsari, and B. Najafi, “Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates,” J. Chem. Phys. 137 (18), 184703–1 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    J. C. Rasaiah, S. Garde, and G. Hummer, “Water in nonpolar confinement: From nanotubes to proteins and beyond,” Ann. Rev. Phys. Chem. 59 (1), 713–740 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    F.-X. Coudert, R. Vuilleumier, and A. Boutin, “Dipole moment, hydrogen bonding and ir spectrum of confined water,” Chem. Phys. Chem. 7 (12), 2464–2467 (2006).

    Article  Google Scholar 

  7. 7.

    V. Kocherbitov, “Properties of water confined in an amphiphilic nanopore},” J. Phys. Chem.} 112} (43}), 16893–16

  8. 8.

    L. Little, Infrared Spectra of Adsorbed Molecules (Academic Press, London, 1966).

    Google Scholar 

  9. 9.

    A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds (Nauka, Moscow, 1972) [in Russia].

    Google Scholar 

  10. 10.

    R. Willis, Physics of Surfaces: Vibrational Spectroscopy of Adsorbers, Ed. by R. Uillisa (Mir. Moscow, 1984) [in Russian].

    Google Scholar 

  11. 11.

    P. E. Wagner, R. M. Somers, and J. L. Jenkins, “Line broadening and relaxation of three microwave transitions in ammonia by wall and inter molecular collisions,” J. Phys. 14, 4763–4770 (1981).

    ADS  Google Scholar 

  12. 12.

    J. M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev., A 87 (3), 032510–1 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26062–26067 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    J.-M. Hartmann, C. Boulet, Auwera J. Vander, H. El Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From moleculewall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).

  16. 16.

    J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev., A 8 (4), 042506 (2013).

    Google Scholar 

  17. 17.

    T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes},” Appl. Phys.} 110 (2), 147–15

  18. 18.

    N. E. Lugina and V. I. Starikov, “Broadening of rovibrational absorption lines of carbon monoxide and dioxide molecules as a result of collisions with walls,” Rus. Phys. J. 55 (6), 657–663 (2012).

    Article  Google Scholar 

  19. 19.

    A. M. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part I. Measurements and calculations,” Atmos. Ocean. Opt. 27 (5), 372–380 (2014).

    Article  Google Scholar 

  20. 20.

    A. M. Solodov, T. M. Petrova, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part II. Calculation of broadening and shift of spectral lines by adsorbed molecules,” Atmos. Ocean. Opt. 28 (3), 232–235 (2014).

    Article  Google Scholar 

  21. 21.

    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the relaxation dependence of line half-width for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Ocean. Opt. 18 (9), 685–694 (2005).

    Google Scholar 

  23. 23.

    A. A. Radtsig and B. M. Smirnov, Handbook on Nuclear and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  24. 24.

    C. J. Tsao and B. Curnutte, “Line-widths of pressurebroadened spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2 (1), 41–91 (1962).

    ADS  Article  Google Scholar 

  25. 25.

    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. 40 (10), 923–943 (1979).

    Article  Google Scholar 

  26. 26.

    R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73 (11), 5432–5450 (1980).

    ADS  Article  Google Scholar 

  27. 27.

    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (Willey, Ney York, 1954).

    MATH  Google Scholar 

  28. 28.

    F. Kiriyama and B. S. Rao, “Electric dipole moment of 12C16O,” J. Quant. Spectrosc. Radiat. Transfer 65 (4), 673–679 (2000).

    ADS  Article  Google Scholar 

  29. 29.

    G. Maroulis, “Electric polarizability and hyperpolarizability of carbon monoxide,” J. Phys. Chem. 100, 13466–13473 (1996).

    Article  Google Scholar 

  30. 30.

    V. N. Stroinova, “Half-width and line center shifts formed by transitions into highly excited vibrational states of CO molecule,” Bull. Tomsk Polytech. Univ. 311, 88–94 (2007).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Starikov.

Additional information

Original Russian Text © V.I. Starikov, A.A. Solodov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I., Solodov, A.A. Line broadening of carbon oxide in the volume of aerogel nanopores. Atmos Ocean Opt 30, 417–421 (2017). https://doi.org/10.1134/S1024856017050128

Download citation

Keywords

  • carbon oxide
  • halfwidth and shift of spectral lines
  • aerogel
  • nanopores