Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 417–421 | Cite as

Line broadening of carbon oxide in the volume of aerogel nanopores

  • V. I. StarikovEmail author
  • A. A. Solodov
Spectroscopy of Ambient Medium

Abstract

Calculations of line broadening and shift of carbon monoxide (CO) molecules confined in nanoporous media are presented. A model is considered in which the line broadenings and shifts are caused by collisions of free CO molecules with walls and adsorbed CO molecules with and without rotational degrees of freedom.

Keywords

carbon oxide halfwidth and shift of spectral lines aerogel nanopores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Henderson, “The interaction of water with solid surfaces: Fundamental aspects revisited,” Sur. Sci. Rep. 46 (1–8), 5–308 (2002).Google Scholar
  2. 2.
    T. Ohba and K. Kaneko, “Cluster-associated filling of water molecules in slit-shaped graphitic nanopores,” Mol. Phys. 105 (2–3), 139–145 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Raghunathan and N. R. Aluru, “An empirical potential based quasicontinuum theory for structural prediction of water,” J. Chem. Phys. 131 (18), 184703.1–184703.7 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Mosaddeghi, S. Alavi, M. H. Kowsari, and B. Najafi, “Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates,” J. Chem. Phys. 137 (18), 184703–1 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    J. C. Rasaiah, S. Garde, and G. Hummer, “Water in nonpolar confinement: From nanotubes to proteins and beyond,” Ann. Rev. Phys. Chem. 59 (1), 713–740 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    F.-X. Coudert, R. Vuilleumier, and A. Boutin, “Dipole moment, hydrogen bonding and ir spectrum of confined water,” Chem. Phys. Chem. 7 (12), 2464–2467 (2006).CrossRefGoogle Scholar
  7. 7.
    V. Kocherbitov, “Properties of water confined in an amphiphilic nanopore},” J. Phys. Chem.} 112} (43}), 16893–16Google Scholar
  8. 8.
    L. Little, Infrared Spectra of Adsorbed Molecules (Academic Press, London, 1966).Google Scholar
  9. 9.
    A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds (Nauka, Moscow, 1972) [in Russia].Google Scholar
  10. 10.
    R. Willis, Physics of Surfaces: Vibrational Spectroscopy of Adsorbers, Ed. by R. Uillisa (Mir. Moscow, 1984) [in Russian].Google Scholar
  11. 11.
    P. E. Wagner, R. M. Somers, and J. L. Jenkins, “Line broadening and relaxation of three microwave transitions in ammonia by wall and inter molecular collisions,” J. Phys. 14, 4763–4770 (1981).ADSGoogle Scholar
  12. 12.
    J. M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev., A 87 (3), 032510–1 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26062–26067 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J.-M. Hartmann, C. Boulet, Auwera J. Vander, H. El Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From moleculewall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).Google Scholar
  16. 16.
    J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev., A 8 (4), 042506 (2013).Google Scholar
  17. 17.
    T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes},” Appl. Phys.} 110 (2), 147–15Google Scholar
  18. 18.
    N. E. Lugina and V. I. Starikov, “Broadening of rovibrational absorption lines of carbon monoxide and dioxide molecules as a result of collisions with walls,” Rus. Phys. J. 55 (6), 657–663 (2012).CrossRefGoogle Scholar
  19. 19.
    A. M. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part I. Measurements and calculations,” Atmos. Ocean. Opt. 27 (5), 372–380 (2014).CrossRefGoogle Scholar
  20. 20.
    A. M. Solodov, T. M. Petrova, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part II. Calculation of broadening and shift of spectral lines by adsorbed molecules,” Atmos. Ocean. Opt. 28 (3), 232–235 (2014).CrossRefGoogle Scholar
  21. 21.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the relaxation dependence of line half-width for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Ocean. Opt. 18 (9), 685–694 (2005).Google Scholar
  23. 23.
    A. A. Radtsig and B. M. Smirnov, Handbook on Nuclear and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  24. 24.
    C. J. Tsao and B. Curnutte, “Line-widths of pressurebroadened spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2 (1), 41–91 (1962).ADSCrossRefGoogle Scholar
  25. 25.
    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. 40 (10), 923–943 (1979).CrossRefGoogle Scholar
  26. 26.
    R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73 (11), 5432–5450 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (Willey, Ney York, 1954).zbMATHGoogle Scholar
  28. 28.
    F. Kiriyama and B. S. Rao, “Electric dipole moment of 12C16O,” J. Quant. Spectrosc. Radiat. Transfer 65 (4), 673–679 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    G. Maroulis, “Electric polarizability and hyperpolarizability of carbon monoxide,” J. Phys. Chem. 100, 13466–13473 (1996).CrossRefGoogle Scholar
  30. 30.
    V. N. Stroinova, “Half-width and line center shifts formed by transitions into highly excited vibrational states of CO molecule,” Bull. Tomsk Polytech. Univ. 311, 88–94 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations