Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 456–461 | Cite as

Analysis of variations in the saltating sand grain transport velocity

  • A. V. KarpovEmail author
  • R. A. Gushchin
  • O. I. Datsenko
Optical Models and Databases


A technique is developed for retrieving the vertical profile of the mass saltation flux from measurements of the saltating sand mass concentration and wind velocity in the surface air layer. The technique is based on the solution of direct and inverse problems of the saltation sand dynamics and aimed at determining the sliding coefficient of sand grains. The calculation results for the sliding coefficient of sand grains are compared with data of measurements in wind channels. The conditions under which saltating sand trajectories fall in the height ranges from 5 to 10 mm and from 10 to 20 mm are revealed. The effect of variations in the diameter, lift-off velocity and angle, and friction velocity on the sliding coefficient of sand grains is analyzed. The sliding coefficient for 100-μm diameter sand particles is estimated for the first time.


saltation dynamics direct and inverse problems mass saltation flux sliding coefficient retrieval method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).Google Scholar
  2. 2.
    X. Zheng, Mechanics of Windblown Sand Movements (Springer, Berlin, 2009).CrossRefGoogle Scholar
  3. 3.
    A. N. Zolotokrylin, Climatic Dessrtification (Nauka, Moscow, 2003) [in Russian].Google Scholar
  4. 4.
    E. K. Byutner, Dynamics of the Surface Air Layer (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  5. 5.
    Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2008).Google Scholar
  6. 6.
    G. I. Gorchakov, A. A. Titov, and D. V. Buntov, “Parameters of the lower layer of saltation over desert territories,” Dokl. Earth Sci. 424 (1), 90–94 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    O. E. Semenov, Introduction in Experimental Meteorology and Climatology of Desert Storms (KazNIIEK, Almaty, 2011) [in Russian].Google Scholar
  8. 8.
    G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, I. A. Zlobin, D. V. Buntov, and A. V. Sokolov, “Study of the dynamics of saltating sand grains over desertified territories,” Dokl. Earch Sci. 452 (2), 1067–1073 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, D. V. Buntov, and A. V. Sokolov, “Specific charge of saltating sand particles on desertified areas,” Dokl. Akad. Nauk 456 (4), 476–480 (2014).Google Scholar
  10. 10.
    G. I. Gorchakov, A. V. Karpov, G. A. Kuznetsov, and D. V. Buntov, “Quasiperiodic saltation in the windsand flux over desertified areas,” Atmos. Ocean. Opt. 29 (6), 501–506 (2016).CrossRefGoogle Scholar
  11. 11.
    K. Rasmussen and M. Sorensen, “Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling,” J. Geophys. Res. 113, 12 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Gordon and Neuman C. McKenna, “A study of particle splash on developing ripple forms for two bed materials,” Geomorphology 129, 79–91 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    G. I. Gorchakov, A. V. Karpov, A. V. Sokolov, D. V. Buntov, and I. A. Zlobin, “Experimental and theoretical study of the trajectories of saltating sand particles over desert areas,” Atmos. Ocean. Opt. 25 (6), 423–428 (2012).CrossRefGoogle Scholar
  14. 14.
    G. I. Gorchakov, D. V. Buntov, A. V. Karpov, I. A. Zlobin, and A. V. Sokolov, “Saltation of sand particles in the surface air layer on desertied areas,” in Proc. of VII Conf. “Natural and Anthropogenic Aerosols” (SPbGU, St. Petersburg, 2011), p. 293–298 [in Russian].Google Scholar
  15. 15.
    G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, A. V. Sokolov, and D. V. Buntov, “Influence of the Saffman force, lift force, and electric force on sand grain transport in a wind–sand flow,” Dokl. Earth Sci. 467 (1), 314–319 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    D. S. Schmidt, R. A. Schmidt, and J. D. Dent, “Electrostatic force on saltating sand,” J. Geophys. Res. 103 (D8), 8997–9001 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    Z.-T. Wang, C.-L. Zhang, and H.-T. Wang, “Forces on a saltating grain in air,” Eur. Phys. J. E 36, 112 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    H. Cheng, X.-Y. Zou, and C.-L. Zhang, “Probability distribution functions for the initial liftoff velocities of saltating sand grain in air,” J. Geophys. Res. 111 (22), D22205 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    A. M. Obukhov, Atmospheric Turbulence and Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  20. 20.
    A. F. Kurbatskii, Introduction in Simulation of the Turbulent Transfer of Pulse and Scalar (GEO, Novosibirsk, 2007) [in Russian].Google Scholar
  21. 21.
    L.-T. Fu, T.-L. Bo, H.-H. Gu, and X.-J. Zheng, “Incident angle of saltating particles in wind-blown sand,” PLOS ONE 8 (7) (2013).Google Scholar
  22. 22.
    B. R. White and J. C. Schulz, “Magnus effect in saltation,” J. Fluid. Mech. 81 (3), 497–512 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    N. Huang, X. Zheng, Y. Zhow, and R. S. Van Pelf, “Simulation of wind-blown sand movement and probability density function of liftoff velocities of sand particles,” J. Geophys. Res. 111 (D20), D20201 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Karpov
    • 1
    Email author
  • R. A. Gushchin
    • 1
  • O. I. Datsenko
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations