Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 441–445 | Cite as

Features of light absorption by an ensemble of microcapsules

  • Yu. E. GeintsEmail author
  • E. K. Panina
  • A. A. Zemlyanov
Optics of Stochastically-Heterogeneous Media
  • 17 Downloads

Abstract

Features of laser radiation scattering and absorption by an ensemble of two identical microcapsules are theoretically studied. Each capsule is modeled by a two-layer spherical micron-size particle consisting of water core and light absorbing polymer shell. By the numerical electrodynamics techniques, it is shown that the internal structure and mutual arrangement of particles affect the spatial distribution and amplitude characteristics of the power absorbed. The highest values of the absorbed power density in model microcapsules could be attained if the particles are shifted relative to each other by a distance of about their diameter (strongly absorbing particles) or if the particles are in the geometric shadow of each other (weak absorption).

Keywords

microcapsules ensemble of particles optical radiation absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21 (6), 569–594 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    G. Decher and J. D. Hong, “Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces,” Macromol. Chem. Sym 46, 321–327 (1991).CrossRefGoogle Scholar
  3. 3.
    G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Mohwald, “Stepwise polyalectrolyte assembly on particles surface: A novel approach to colloid design,” Polym. Adv. Technol. 9 (10–11), 759–767 (1998).CrossRefGoogle Scholar
  4. 4.
    E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, “Novel hollow polymer shells by colloid- templated assemble of polyelectrolytes,” Angew. Chem., Int. Ed. Engl. 37, 2201–2205 (1998).CrossRefGoogle Scholar
  5. 5.
    A. S. Timin, H. Gao, D. V. Voronin, D. A. Gorin, and G. B. Sukhorukov, “Inorganic/organic multilayer capsule composition for improved functionality and external triggering,” Adv. Mater. Interfaces, 1600338 (2016). doi 10.1002/admi.201600338Google Scholar
  6. 6.
    K. Miyazawa, I. Yajima, I. Kaneda, and T. Yanaki, “Preparation of a new soft capsule for cosmetic,” J. Cosmet. Sci. 51, 239–252 (2000).Google Scholar
  7. 7.
    R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature (Gr. Brit.) 428, 487–492 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, A. S. Kuchyanov, R. G. Parkhomenko, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as novel versatile biomedical tool.” arXiv:1501.00342 (2015).Google Scholar
  9. 9.
    M. Rosenberg and S.-J. Lee, “Water-insoluble, whey protein-based microspheres prepared by an all-aqueous process,” J. Food Sci. 69, FEP50 (2004).CrossRefGoogle Scholar
  10. 10.
    A. G. Skirtach, A. M. Javier, O. Kreft, K. Köhler, A. P. Alberola, H. Möhwald, W. J. Parak, and G. B. Sukhorukov, “Laser-induced release of encapsulated materials inside living cells,” Angew. Chem., Int. Ed. Engl. 45 (28), 4612–4617 (2006).CrossRefGoogle Scholar
  11. 11.
    A. S. Angelatos, B. Radt, and F. Caruso, “Lightresponsive polyelectrolyte/gold nanoparticle microcapsules,” J. Phys. Chem., B 109 (7), 3071–3076 (2005).CrossRefGoogle Scholar
  12. 12.
    A. G. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, “Remote activation of capsules containing ag nanoparticles and IR dye by laser light,” Langmuir 20 (17), 6988–6992 (2004).CrossRefGoogle Scholar
  13. 13.
    H. Gao, D. Wen, N. V. Tarakina, J. Liang, A. J. Bushbya, and G. B. Sukhorukov, “Bifunctional ultraviolet/ ultrasound responsive composite TiO2/polyelectrolyte microcapsules,” Nanoscale 8, 5170–5180 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. Terakawa, T. Mitsuhashi, T. Shinohara, and H. Shimizu, “Near-infrared femtosecond laser-triggered nanoperforation of hollow microcapsules,” Opt. Express 21 (10), 12604–12610 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys. 44 (12), 8269–8285 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Simulation of spatial distribution of absorbed laser energy in spherical microcapsules,” Quantum Electron. 46 (9), 815–820 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Arthech House Pub, Boston, 2000).zbMATHGoogle Scholar
  18. 18.
    M. Born and E. Wolf, Prinsiples of Optics (Pergamon Press, 1970), 4th ed.Google Scholar
  19. 19.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “The influence of spherical microcapsules on the spatial distribution of absorbed laser radiation power,” Atmos. Ocean. Opt. 29 (5), 477–481 (2016).CrossRefGoogle Scholar
  20. 20.
    Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. E. Geints
    • 1
    Email author
  • E. K. Panina
    • 1
  • A. A. Zemlyanov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations