Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 405–411 | Cite as

The effect of stimulated Mandelstam–Brillouin scattering on angular divergence of a laser beam in the air

  • A. D. BulyginEmail author
  • A. A. Zemlyanov
  • A. B. Ignat’ev
  • V. V. Morozov
Optical Waves Propagation


A quasi-steady-state approximation for the problem of stimulated Mandelstam–Brillouin scattering (SMBS) in the air as in a multimode acoustic medium is formulated. In this approximation, a numerical solution of the equation for the envelope of the complex light field amplitude is implemented. Based on a series of performed numerical experiments, it is established that the SMBS effect can lead to a discernible increase in the angular divergence of laser beams during the propagation of a sufficiently powerful laser radiation with a wavelength λ = 1.315 μm in air.


Mandelstam–Brillouin scattering nonlinear parabolic equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Uspekhi Phys. Nauk 98 (7), 441–491 (1969).CrossRefGoogle Scholar
  2. 2.
    A. Corvo and A. Gavrielides, “Forward stimulated Brillouin scattering,” J. Appl. Phys. 63 (11), 5220 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    N. E. Andreev, M. V. Chegotov, and L. M. Gorbunov, “Dynamics of Mandel’shtam–Brillouin induced scattering during self-focusing of a laser beam, J. Exp. Theor. Phys. 88 (6), 1066–1071 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Livshitz, Statistical Physics. Part 1 (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. 5.
    V. V. Morozov and L. E. Chernyshev, “Simulated Brillouin scattering in an acoustic resonator,” Qunatum Electron. 10 (7), 807–810 (1980).ADSGoogle Scholar
  6. 6.
    R. Pantell and G. Puthoff, Fundamentals of Quantum Electronics (John Wiley & Sons, New York, London, Sydney, Toronto, 1969).Google Scholar
  7. 7.
    D. N. Klyshko, Photons and Nonlinear Optics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  8. 8.
    V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Atmospheric Optics (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. D. Bulygin
    • 1
    Email author
  • A. A. Zemlyanov
    • 1
  • A. B. Ignat’ev
    • 2
  • V. V. Morozov
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.NPO AlmazMoscowRussia

Personalised recommendations