Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 5, pp 451–455 | Cite as

Post-filamentation light channels in air

  • D. V. ApeksimovEmail author
  • A. A. Zemlyanov
  • A. M. Kabanov
  • A. N. Stepanov
Nonlinear Optics

Abstract

The results are presented of the experimental study of spatial characteristics of postfilamentation light channels in air formed by femtosecond pulses of a Ti:Sapphire laser with different energy for focused and collimated beams. It is found that the angular divergence of channels is dozens of times lower than the angular divergence of a beam as a whole for focused beams in the far zone from the filamentation region. The angular divergence of the channels first significantly decreases with an increase in the pulse energy and then saturates. For collimated beams, at a fixed distance from the source, an increase in the pulse energy also leads to stabilization of the channel cross section.

Keywords

laser radiation femtosecond pulse filamentation postfilamentation light channel focusing air 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Self-focusing: Past and present. Fundamentals and prospects,” in Topics in Applied Physics, Vol. 114, Ed. by R.W. Boyd (Springer, Berlin, 2009), pp. 3–19.Google Scholar
  2. 2.
    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    G. Mehain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys., B 79, 379–382 (2004).CrossRefGoogle Scholar
  4. 4.
    J.-F. Daigle, O. Kosareva, N. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization- free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    Hui Gao, Weiwei Liu, and See Leang Chin, “Post-filamentation multiple light channel formation in air,” Laser Phys. 24, 055301 (2014). doi 10.1088/1054-660X/24/5/055301ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, “Dynamics of light structures during filamentation of femtosecond laser pulses in air,” Atmos. Ocean. Opt. 29 (5), 395–403 (2016).CrossRefGoogle Scholar
  7. 7.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Filament formation beyond linear focus during femtosecond laser pulse propagation in air,” Atmos. Ocean. Opt. 26 (2), 96–103 (2013).CrossRefGoogle Scholar
  8. 8.
    Yu. E. Geints, D. V. Apeksimov, and D. V. Afonasenko, State Registration Certificate of Computer Program No. 201461687, Russian Federation (July 7, 2014).Google Scholar
  9. 9.
    N. N. Bochkarev, A. M. Kabanov, and A. N. Stepanov, “Spatial localization of a filamentation zone along the propagation path of focused femtosecond laser radiation in air,” Atmos. Ocean. Opt. 20 (10), 787–791 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Apeksimov
    • 1
    Email author
  • A. A. Zemlyanov
    • 1
  • A. M. Kabanov
    • 1
  • A. N. Stepanov
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of ScienceTomskRussia
  2. 2.Institute of Applied PhysicsRussian Academy of ScienceNizhny NovgorodRussia

Personalised recommendations