Atmospheric and Oceanic Optics

, Volume 30, Issue 4, pp 305–310 | Cite as

Radiative transfer code for the thermal and near-infrared regions with multiple scattering

  • I. V. ZadvornykhEmail author
  • K. G. Gribanov
  • V. I. Zakharov
  • R. Imasu
Spectroscopy of Ambient Medium


FIRE-ARMS software was supplemented with the vector radiative transfer model VLIDORT. The new version of the software allows simulating outgoing thermal infrared radiation (TIR) from the Earth and solar shortwave infrared radiation (SWIR) reflected from the surface taking into account multiple scattering for the same atmospheric model and sensing geometry. We performed simulations of the spectra of outgoing TIR and SWIR radiation with multiple scattering in a cloudless atmosphere and compared them with the spectra measured by GOSAT satellite spectrometers in the cloudless atmosphere over Western Siberia. Analysis of calculated weighting functions shows that simultaneous use of the TIR and SWIR spectral regions will improve the height resolution in vertical profiling of methane concentrations in the atmosphere.


radiative transfer remote sensing multiple scattering GOSAT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Climate Change 2013: The Physical Science Basis. The 5th Assessment Report of the IPCC (Cambridge University Press, Cambridge; New York, 2013).Google Scholar
  2. 2.
    Atmospheric Infrared Sounder: Mission & Instrument. Cited September 20, 2016.Google Scholar
  3. 3.
    S. A. Tashkun, V. I. Perevalov, and J. L. Teffo, “CDSD-IASI, the high precision Carbon Dioxide Spectroscopic Databank: Version for METOP-IASI mission,” in Proc. ASA Int. Workshop, Reims, France, September 6–8, 2005 (Reims, 2005). P. 95.Google Scholar
  4. 4.
    H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, and V. V. Rozanov, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56 (2), 125–127 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring,” Appl. Opt. 48 (35), 6716–6733 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    T. Matsunaga, T. Yokota, Sh. Maksyutov, I. Morino, Yu. Yoshida, M. Saito, M. Ajiro, and O. Uchino, “The statuses of GOSAT and GOSAT-2 projects at National Institute for Environmental Studies (NIES),” in Geophysical Research Abstracts, EGU General Assembly 2015. Cited September 20, 2016.Google Scholar
  7. 7.
    M. Nakajima, H. Suto, K. Yotsumoto, T. Miyakawa, and K. Shiomi, “GOSAT-2: Development status of the mission instruments,” in Geophysical Research Abstracts, EGU General Assembly 2015. Cited September 20, 2016.Google Scholar
  8. 8.
    C. O’Dell, “The first eighteen months of NASA’s Orbiting Carbon Observatory-2 (OCO-2): Mission status, error characterization, and preliminary results,” in Geophysical Research Abstracts, EGU General Assembly 2016. Cited September 20, 2016.Google Scholar
  9. 9.
    C. D. Rogers, Inverse Methods for Atmospheric Sounding. Theory and Practice (World Scientific Publishing, Singapore, London, 2000).CrossRefGoogle Scholar
  10. 10.
    M. J. Christi and G. L. Stephens, “Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study,” J. Geophys. Res. 109 (D04316), 1–11 (2004).Google Scholar
  11. 11.
    T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM. Laboratoriya znanii, Moscow, 2005) [in Russian].zbMATHGoogle Scholar
  12. 12.
    B. Fomin and V. Falaleeva, “A polarized atmospheric radiative transfer model for calculations of spectra of the stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods,” Atmosphere 3 (4), 451–467 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    V. Budak, G. Kaloshin, O. Shagalov, and V. Zheltov, “Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration,” J. Opt. Soc. Amer., A 23 (15), 829–840 (2015).Google Scholar
  14. 14.
    V. P. Budak and S. V. Korkin, “Modeling of spatial distribution of the atmosphere-scattered radiation polarization coefficient on the base of complete analytical solution of the vector transfer equation,” Atmos. Ocean. Opt. 21 (1), 27–32 (2008).Google Scholar
  15. 15.
    T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–97 (2008).Google Scholar
  16. 16.
    A. N. Rublev, Doctoral Dissertation in Mathematics and Physics (NITs “Planeta”, Moscow, 2013).Google Scholar
  17. 17.
    S. Chandrasekhar, Radiative Transfer (Dover, 1960).zbMATHGoogle Scholar
  18. 18.
    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    R. J. Spurr, “VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,” J. Quant. Spectrosc. Radiat. Transfer 102 (2), 316–342 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    R. J. Spurr, VLIDORT Version 2.6. User’s Guide. Cited September 20, 2016.Google Scholar
  21. 21.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN-2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    C. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved algorithm for calculations of rayleighscattering optical depth in standard atmospheres,” Appl. Opt. 44 (16), 3320–3341 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    D. M. O’Brien, I. Polonsky, C. O’Dell, A. Kuze, N. Kikuchi, Y. Yoshida, and V. Natraj, “Testing the polarization model for TANSO-FTS on GOSAT against clear-sky observations of sun glint over the ocean,” IEEE Trans. Geosc. Remote. Sens. 51 (12), 5199–5209 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Amer. Meteorol. Soc., No. 77, 437–470 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    R. J. Spurr and M. J. Christi, “On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models,” J. Quant. Spectrosc. Radiat. Transfer 142, 109–115 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Zadvornykh
    • 1
    Email author
  • K. G. Gribanov
    • 1
  • V. I. Zakharov
    • 1
  • R. Imasu
    • 2
  1. 1.Institute of Natural SciencesUral Federal UniversityYekaterinburgRussia
  2. 2.Atmosphere and Ocean Research InstituteUniversity of TokyoChibaJapan

Personalised recommendations