Skip to main content
Log in

Radiative transfer code for the thermal and near-infrared regions with multiple scattering

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

FIRE-ARMS software was supplemented with the vector radiative transfer model VLIDORT. The new version of the software allows simulating outgoing thermal infrared radiation (TIR) from the Earth and solar shortwave infrared radiation (SWIR) reflected from the surface taking into account multiple scattering for the same atmospheric model and sensing geometry. We performed simulations of the spectra of outgoing TIR and SWIR radiation with multiple scattering in a cloudless atmosphere and compared them with the spectra measured by GOSAT satellite spectrometers in the cloudless atmosphere over Western Siberia. Analysis of calculated weighting functions shows that simultaneous use of the TIR and SWIR spectral regions will improve the height resolution in vertical profiling of methane concentrations in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Climate Change 2013: The Physical Science Basis. The 5th Assessment Report of the IPCC (Cambridge University Press, Cambridge; New York, 2013).

    Google Scholar 

  2. Atmospheric Infrared Sounder: Mission & Instrument. http://airs.jpl.nasa.gov/mission_and_instrument/overview. Cited September 20, 2016.

  3. S. A. Tashkun, V. I. Perevalov, and J. L. Teffo, “CDSD-IASI, the high precision Carbon Dioxide Spectroscopic Databank: Version for METOP-IASI mission,” in Proc. ASA Int. Workshop, Reims, France, September 6–8, 2005 (Reims, 2005). P. 95.

    Google Scholar 

  4. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, and V. V. Rozanov, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56 (2), 125–127 (1999).

    Article  ADS  Google Scholar 

  5. A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring,” Appl. Opt. 48 (35), 6716–6733 (2009).

    Article  ADS  Google Scholar 

  6. T. Matsunaga, T. Yokota, Sh. Maksyutov, I. Morino, Yu. Yoshida, M. Saito, M. Ajiro, and O. Uchino, “The statuses of GOSAT and GOSAT-2 projects at National Institute for Environmental Studies (NIES),” in Geophysical Research Abstracts, EGU General Assembly 2015. http://meetingorganizer.copernicus.org/EGU2015/EGU2015-13150.pdf. Cited September 20, 2016.

    Google Scholar 

  7. M. Nakajima, H. Suto, K. Yotsumoto, T. Miyakawa, and K. Shiomi, “GOSAT-2: Development status of the mission instruments,” in Geophysical Research Abstracts, EGU General Assembly 2015. http://meetingorganizer.copernicus.org/EGU2015/EGU2015-7731.pdf. Cited September 20, 2016.

    Google Scholar 

  8. C. O’Dell, “The first eighteen months of NASA’s Orbiting Carbon Observatory-2 (OCO-2): Mission status, error characterization, and preliminary results,” in Geophysical Research Abstracts, EGU General Assembly 2016. http://meetingorganizer.copernicus.org/EGU2016/EGU2016-11151.pdf. Cited September 20, 2016.

    Google Scholar 

  9. C. D. Rogers, Inverse Methods for Atmospheric Sounding. Theory and Practice (World Scientific Publishing, Singapore, London, 2000).

    Book  Google Scholar 

  10. M. J. Christi and G. L. Stephens, “Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study,” J. Geophys. Res. 109 (D04316), 1–11 (2004).

    Google Scholar 

  11. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM. Laboratoriya znanii, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  12. B. Fomin and V. Falaleeva, “A polarized atmospheric radiative transfer model for calculations of spectra of the stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods,” Atmosphere 3 (4), 451–467 (2012).

    Article  ADS  Google Scholar 

  13. V. Budak, G. Kaloshin, O. Shagalov, and V. Zheltov, “Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration,” J. Opt. Soc. Amer., A 23 (15), 829–840 (2015).

    Google Scholar 

  14. V. P. Budak and S. V. Korkin, “Modeling of spatial distribution of the atmosphere-scattered radiation polarization coefficient on the base of complete analytical solution of the vector transfer equation,” Atmos. Ocean. Opt. 21 (1), 27–32 (2008).

    Google Scholar 

  15. T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–97 (2008).

    Google Scholar 

  16. A. N. Rublev, Doctoral Dissertation in Mathematics and Physics (NITs “Planeta”, Moscow, 2013).

    Google Scholar 

  17. S. Chandrasekhar, Radiative Transfer (Dover, 1960).

    MATH  Google Scholar 

  18. K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).

    Article  ADS  Google Scholar 

  19. R. J. Spurr, “VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,” J. Quant. Spectrosc. Radiat. Transfer 102 (2), 316–342 (2006).

    Article  ADS  Google Scholar 

  20. R. J. Spurr, VLIDORT Version 2.6. User’s Guide. http://web.gps.caltech.edu/~vijay/vlidort_2p6_f90userguide_v12_08feb2013_NC.pdf. Cited September 20, 2016.

    Google Scholar 

  21. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN-2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  22. C. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved algorithm for calculations of rayleighscattering optical depth in standard atmospheres,” Appl. Opt. 44 (16), 3320–3341 (2005).

    Article  ADS  Google Scholar 

  23. D. M. O’Brien, I. Polonsky, C. O’Dell, A. Kuze, N. Kikuchi, Y. Yoshida, and V. Natraj, “Testing the polarization model for TANSO-FTS on GOSAT against clear-sky observations of sun glint over the ocean,” IEEE Trans. Geosc. Remote. Sens. 51 (12), 5199–5209 (2013).

    Article  ADS  Google Scholar 

  24. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Amer. Meteorol. Soc., No. 77, 437–470 (1996).

    Article  ADS  Google Scholar 

  25. R. J. Spurr and M. J. Christi, “On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models,” J. Quant. Spectrosc. Radiat. Transfer 142, 109–115 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zadvornykh.

Additional information

Original Russian Text © I.V. Zadvornykh, K.G. Gribanov, V.I. Zakharov, R. Imasu, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadvornykh, I.V., Gribanov, K.G., Zakharov, V.I. et al. Radiative transfer code for the thermal and near-infrared regions with multiple scattering. Atmos Ocean Opt 30, 305–310 (2017). https://doi.org/10.1134/S1024856017040145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017040145

Keywords

Navigation