Skip to main content
Log in

Empirical assessment of errors in total ozone measurements with different instruments and methods

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


Knowledge of measurement errors is one of the most important issues for assessing the quality of experimental data. In this paper, we compared various methods and instruments for measuring the total ozone content (TOC) near St. Petersburg in the period from 2009 to 2015. We considered the TOC datasets of ground-based measurements at Voyeykovo (Dobson spectrophotometer and M-124 ozonometer) and Peterhof (Bruker 125HR spectrometer), as well as OMI and IASI satellite measurements. To assess the errors intrinsic to each of these instruments three ensembles of the TOC measurements were formed containing different numbers of comparisons and based on different selection criteria. At the first stage, we determined the means and standard deviations between the ensembles of the TOC measurements. Then, assuming a horizontally homogeneous and stationary ozone field, the random and systematic errors of individual methods were evaluated. The average random errors of the TOC measurements for all tree ensembles were 2.9 ± 0.5%, 2.8 ± 0.7%, 1.2 ± 0.2%, and 1.4 ± 0.1% for IASI, M-124, OMI, and Bruker 125HR, respectively. The systematic error of the standard Dobson measurements is–1.7% and–2.1% for OMI and IASI, respectively, and amounts to + 0.5% and + 2.1% for M-124 and Bruker 125HR, respectively. The OMI and Bruker 125HR TOC measurement errors are most resistant to atmospheric conditions, whereas errors in IASI and M-124 TOC measurements depend to a large extent on the state of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion. Global Ozone Research and Monitoring Project, Report N 56 (WMP, Geneva, 2014).

  2. Yu. M. Timofeev, “Satellite methods for the study of gas composition of the atmosphere (Review),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 26 (5), 451–472 (1989).

    ADS  Google Scholar 

  3. B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. D. Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurölä, E. Kyrola, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny, “Past changes in the vertical distribution of ozone—Part 1: Measurement techniques, uncertainties and availability,” Atmos. Meas. Tech. 7 (5), 1395–1427 (2014).

    Article  Google Scholar 

  4. D. Balis, M. Kroon, M. E. Koukouli, E. J. Brinksma, G. Labow, J. P. Veefkind, and R. D. McPeters, “Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations,” J. Geophys. Res. D 112 (24), 46 (2007).

    Google Scholar 

  5. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectr. 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  6. Ya. A. Virolainen, Yu. M. Timofeev, and A. V. Poberovskii, “Intercomparison of satellite and ground-based ozone total column measurements,” Izv., Atmos. Ocean. Phys. 49 (9), 993–1001 (2013).

    Article  Google Scholar 

  7. Y. A. Virolainen, Y. M. Timofeyev, A. V. Polyakov, D. V. Ionov, and A. V. Poberovsky, “Intercomparison of satellite and ground-based measurements of ozone, NO2, HF, and HCl near Saint Petersburg, Russia,” Int. J. Remote Sens. 35 (15), 5677–5697 (2014).

    Google Scholar 

  8. R. D. McPeters, M. Kroon, G. Labow, E. J. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura ozone monitoring instrument total column ozone product,” J. Geophys. Res. D 113 (15), 14 (2008).

    Google Scholar 

  9. I. Ialongo, G. R. Casale, and A. M. Siani, “Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station,” Atmos. Chem. Phys. 8 (12), 3283–3289 (2008).

    Article  ADS  Google Scholar 

  10. J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, and D. Smale, “The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations,” Atmos. Meas. Tech. 9 (1), 79–92 (2016).

    Article  Google Scholar 

  11. D. V. Ionov, V. V. Kalinnikov, Yu. M. Timofeev, N. A. Zaitsev, Ya. A. Virolainen, V. S. Kostsov, and A. V. Poberovskii, “Comparison of ground-based radiophysical and optical IR techniques for measurements of integral water vapor,” Radiophys. Quantum Electron. (in press).

  12. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87 (1), 25–52 (2004).

    Article  ADS  Google Scholar 

  13. W. D. Komhyr and R. D. Evans, Operations Handbook— Ozone Observations with a Dobson Spectrophotometer.

  14. A. M. Shalamyanskii, “CIS ozone monitoring network,” Meteorol. Gidrol, No. 9, 100–104 (1993).

    Google Scholar 

  15. P. F. Levelt, Oord G. H. J. Van Den, M. R. Dobber, A. Malkki, H. Visser, J. De Vries, P. Stammes, J. O. V. Lundell, and H. Saari, “The Ozone Monitoring Instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006).

    Article  ADS  Google Scholar 

  16. P. K. Bhartia and C. W. Wellemeyer, OMI TOMS‒V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document: OMI Ozone Products. V. 2. ATBD‒OMI‒02, version 2.0, 2002. OMI-02.pdf.

    Google Scholar 

  17. C. Clerbaux, A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes, and P.-F. Coheur, “Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder,” Atmos. Chem. Phys. 9 (16), 6041–6054 (2009).

    Article  ADS  Google Scholar 

  18. G. Dufour, M. Eremenko, A. Griesfeller, B. Barret, E. LeFlochmoen, C. Clerbaux, J. Hadji-Lazaro, P.-F. Coheur, and D. Hurtmans, “Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes,” Atmos. Meas. Tech. 5 (3), 611–630 (2012).

    Article  Google Scholar 

  19. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, M. Eremenko, and G. Dyufor, “Evaluation of ozone content in different atmospheric layers using groundbased fourier transform spectrometry,” Izv. Atmos. Ocean. Phys. 51 (2), 167–176 (2015).

    Article  Google Scholar 

  20. M. Anton, M. Lopez, J. M. Vilaplana, M. Kroon, R. McPeters, and A. Serrano, “Validation of OMITOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula,” J. Geophys. Res. 114 (D14307) (2009).

    Article  ADS  Google Scholar 

  21. C. Viatte, M. Schneider, A. Redondas, F. Hase, M. Eremenko, P. Chelin, J.-M. Flaud, T. Blumenstock, and J. Orphal, “Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments,” Atmos. Meas. Tech. 4 (3), 535–546 (2011).

    Article  Google Scholar 

  22. K. Ya. Kondrat’ev and Yu. M. Timofeev, Meteorological Sounding of the Atmosphere from Space (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ya. A. Virolainen.

Additional information

Original Russian Text © Ya.A. Virolainen, Yu.M. Timofeyev, A.V. Poberovskii, A.V. Polyakov, A.M. Shalamyanskii, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Timofeyev, Y.M., Poberovskii, A.V. et al. Empirical assessment of errors in total ozone measurements with different instruments and methods. Atmos Ocean Opt 30, 382–388 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: