Skip to main content

Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air


The conditions for filamentation of femtosecond pulse laser radiation when focusing in air are studied experimentally and theoretically. A good agreement between experimental and calculated results is shown if neglecting the filament plasma. It is shown that the Kerr nonlinearity plays a fundamental role in the generation, existence, and cessation of a filament at a small numerical aperture (NA ≤ 2.15 × 10–3). The Kerr effect first leads to the beam self-focusing and generation of a filament, and at the final stage, to radiation defocusing and a sharp decrease in its axial intensity due to the beam wavefront distortions. In the case of aberration focusing, a spatial quasi-soliton is formed after a visible filament due to the balance between Kerr self-focusing and diffraction spreading. The quasi-soliton is a source of the directional white supercontinuum.

This is a preview of subscription content, access via your institution.


  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).

    Article  ADS  Google Scholar 

  2. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. 20 (3), 183–190 (2002).

    Google Scholar 

  3. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301 (5629), 61–64 (2003).

    Article  ADS  Google Scholar 

  4. P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, R. E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 Terawatt atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106 (2007).

    Article  ADS  Google Scholar 

  5. Y. E. Geints and A. A. Zemlyanov, “On the focusing limit of high-power femtosecond laser pulse propagation in air,” Eur. Phys. J., D 55, 745–754 (2009).

    Article  ADS  Google Scholar 

  6. Y. E. Geints and A. A. Zemlyanov, “Self-focusing of a focused femtosecond laser pulse in air,” Appl. Phys. 101 (4), 735–742.

  7. Y. E. Geints, A. D. Bulygin, and A. A. Zemlyanov, “Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays,” Appl. Phys. 107 (1), 243–255.

  8. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime,” Atmos. Ocean. Opt. 22 (2), 150–157 (2009).

    Article  Google Scholar 

  9. Yu. E. Geints and A. A. Zemlyanov, A A. Ionin, D. V. Mokrousova, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels,” Quantum Electron. 46 (11), 1009–1014 (2016).

    Article  ADS  Google Scholar 

  10. F. Théberge, P. Lassonde, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Efficient spectral-step expansion of a filamenting laser pulse,” Opt. Lett. 38 (9), 1576–1578 (2013).

    Article  ADS  Google Scholar 

  11. K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4 (7217) (2014).

    Google Scholar 

  12. N. G. Ivanov, V. F. Losev, and V. E. Prokop’ev, “Study of the population inversion mechanisms and superradiance on transitions of molecular nitrogen ions in the filament,” Proc. SPIE 9810, 98100 (2015).

    ADS  Google Scholar 

  13. N. Aközbek, S. A. Trushin, A. Baltuska, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W.E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8 (177), 25619–2 (1–12) (2006).

    MathSciNet  Google Scholar 

  14. F. Théberge, W. Luo Q. Liu, and S. L. Chin, “Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses,” Appl. Phys., B 80, 221–225 (2005).

    Article  ADS  Google Scholar 

  15. S. G. Garanin, I. Epatko, L. L’vov, R. V. Serov, and S. Sukharev, “Self-focusing suppression in a system of two nonlinear media and a spatial filter,” Quant. Electron. 37 (12), 1159–1165 (2007).

    Article  ADS  Google Scholar 

  16. R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin; Heidelberg; New York, 2007).

    Google Scholar 

  17. J. H. Marburger, “Self-focusing: Theory,” Prog. Quant. 4, 35 (1975).

    Article  Google Scholar 

  18. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev., E 74, 036406 (1–7) (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. G. Ivanov.

Additional information

Original Russian Text © N.G. Ivanov, V.F. Losev, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.G., Losev, V.F. Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air. Atmos Ocean Opt 30, 331–336 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Kerr nonlinearity
  • filamentation
  • focusing
  • supercontinuum