Abstract
The conditions for filamentation of femtosecond pulse laser radiation when focusing in air are studied experimentally and theoretically. A good agreement between experimental and calculated results is shown if neglecting the filament plasma. It is shown that the Kerr nonlinearity plays a fundamental role in the generation, existence, and cessation of a filament at a small numerical aperture (NA ≤ 2.15 × 10–3). The Kerr effect first leads to the beam self-focusing and generation of a filament, and at the final stage, to radiation defocusing and a sharp decrease in its axial intensity due to the beam wavefront distortions. In the case of aberration focusing, a spatial quasi-soliton is formed after a visible filament due to the balance between Kerr self-focusing and diffraction spreading. The quasi-soliton is a source of the directional white supercontinuum.
This is a preview of subscription content, access via your institution.
References
A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).
H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. 20 (3), 183–190 (2002).
J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301 (5629), 61–64 (2003).
P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, R. E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 Terawatt atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106 (2007).
Y. E. Geints and A. A. Zemlyanov, “On the focusing limit of high-power femtosecond laser pulse propagation in air,” Eur. Phys. J., D 55, 745–754 (2009).
Y. E. Geints and A. A. Zemlyanov, “Self-focusing of a focused femtosecond laser pulse in air,” Appl. Phys. 101 (4), 735–742.
Y. E. Geints, A. D. Bulygin, and A. A. Zemlyanov, “Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays,” Appl. Phys. 107 (1), 243–255.
Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime,” Atmos. Ocean. Opt. 22 (2), 150–157 (2009).
Yu. E. Geints and A. A. Zemlyanov, A A. Ionin, D. V. Mokrousova, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels,” Quantum Electron. 46 (11), 1009–1014 (2016).
F. Théberge, P. Lassonde, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Efficient spectral-step expansion of a filamenting laser pulse,” Opt. Lett. 38 (9), 1576–1578 (2013).
K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4 (7217) (2014).
N. G. Ivanov, V. F. Losev, and V. E. Prokop’ev, “Study of the population inversion mechanisms and superradiance on transitions of molecular nitrogen ions in the filament,” Proc. SPIE 9810, 98100 (2015).
N. Aközbek, S. A. Trushin, A. Baltuska, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W.E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8 (177), 25619–2 (1–12) (2006).
F. Théberge, W. Luo Q. Liu, and S. L. Chin, “Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses,” Appl. Phys., B 80, 221–225 (2005).
S. G. Garanin, I. Epatko, L. L’vov, R. V. Serov, and S. Sukharev, “Self-focusing suppression in a system of two nonlinear media and a spatial filter,” Quant. Electron. 37 (12), 1159–1165 (2007).
R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin; Heidelberg; New York, 2007).
J. H. Marburger, “Self-focusing: Theory,” Prog. Quant. 4, 35 (1975).
F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev., E 74, 036406 (1–7) (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.G. Ivanov, V.F. Losev, 2017, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Ivanov, N.G., Losev, V.F. Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air. Atmos Ocean Opt 30, 331–336 (2017). https://doi.org/10.1134/S1024856017040066
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856017040066
Keywords
- Kerr nonlinearity
- filamentation
- focusing
- supercontinuum