Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 4, pp 331–336 | Cite as

Kerr nonlinearity effect on femtosecond pulse radiation filamentation in air

  • N. G. IvanovEmail author
  • V. F. Losev
Nonlinear Optics

Abstract

The conditions for filamentation of femtosecond pulse laser radiation when focusing in air are studied experimentally and theoretically. A good agreement between experimental and calculated results is shown if neglecting the filament plasma. It is shown that the Kerr nonlinearity plays a fundamental role in the generation, existence, and cessation of a filament at a small numerical aperture (NA ≤ 2.15 × 10–3). The Kerr effect first leads to the beam self-focusing and generation of a filament, and at the final stage, to radiation defocusing and a sharp decrease in its axial intensity due to the beam wavefront distortions. In the case of aberration focusing, a spatial quasi-soliton is formed after a visible filament due to the balance between Kerr self-focusing and diffraction spreading. The quasi-soliton is a source of the directional white supercontinuum.

Keywords

Kerr nonlinearity filamentation focusing supercontinuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “Teramobile: A mobile femtosecond-terawatt laser and detection system,” Eur. Phys. J. 20 (3), 183–190 (2002).Google Scholar
  3. 3.
    J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301 (5629), 61–64 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, R. E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 Terawatt atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Y. E. Geints and A. A. Zemlyanov, “On the focusing limit of high-power femtosecond laser pulse propagation in air,” Eur. Phys. J., D 55, 745–754 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Y. E. Geints and A. A. Zemlyanov, “Self-focusing of a focused femtosecond laser pulse in air,” Appl. Phys. 101 (4), 735–742.Google Scholar
  7. 7.
    Y. E. Geints, A. D. Bulygin, and A. A. Zemlyanov, “Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays,” Appl. Phys. 107 (1), 243–255.Google Scholar
  8. 8.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime,” Atmos. Ocean. Opt. 22 (2), 150–157 (2009).CrossRefGoogle Scholar
  9. 9.
    Yu. E. Geints and A. A. Zemlyanov, A A. Ionin, D. V. Mokrousova, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels,” Quantum Electron. 46 (11), 1009–1014 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    F. Théberge, P. Lassonde, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Efficient spectral-step expansion of a filamenting laser pulse,” Opt. Lett. 38 (9), 1576–1578 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4 (7217) (2014).Google Scholar
  12. 12.
    N. G. Ivanov, V. F. Losev, and V. E. Prokop’ev, “Study of the population inversion mechanisms and superradiance on transitions of molecular nitrogen ions in the filament,” Proc. SPIE 9810, 98100 (2015).ADSGoogle Scholar
  13. 13.
    N. Aközbek, S. A. Trushin, A. Baltuska, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W.E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8 (177), 25619–2 (1–12) (2006).MathSciNetGoogle Scholar
  14. 14.
    F. Théberge, W. Luo Q. Liu, and S. L. Chin, “Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses,” Appl. Phys., B 80, 221–225 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    S. G. Garanin, I. Epatko, L. L’vov, R. V. Serov, and S. Sukharev, “Self-focusing suppression in a system of two nonlinear media and a spatial filter,” Quant. Electron. 37 (12), 1159–1165 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin; Heidelberg; New York, 2007).Google Scholar
  17. 17.
    J. H. Marburger, “Self-focusing: Theory,” Prog. Quant. 4, 35 (1975).CrossRefGoogle Scholar
  18. 18.
    F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev., E 74, 036406 (1–7) (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations