Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 4, pp 311–315 | Cite as

Collisional self-broadening coefficients and probabilities of spontaneous emission of the CO2 1000–0001 transition lines

  • K. I. ArshinovEmail author
  • O. N. Krapivnaya
  • V. V. Nevdakh
Spectroscopy of Ambient Medium

Abstract

Using a tunable frequency-stabilized CO2 laser, the pressure dependences of unsaturated absorption coefficients (AC) are measured in pure carbon dioxide in the pressure range from 5 to 30 Torr, where the spectral line shape is described by the Voigt profile. The absorption coefficients are measured in the centers of R(8), R(22), R(34), P(22), and P(36) spectral lines of the 1000–0001 transition in the temperature range 300–700 K. By means of the least-squares method, the inverse problem is solved for the system of equations for AC at different pressures in the temperature range under study. The self-broadening coefficients \({\gamma _{C{O_2} - C{O_2}}}\) and the probabilities of spontaneous emission A ik are derived. A new formula is proposed for \({\gamma _{C{O_2} - C{O_2}}}\) (T) dependence.

Keywords

carbon dioxide absorption self-broadening coefficient spontaneous emission probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers (Nauka i Tekhnika, Minsk, 1985) [in Russian].Google Scholar
  2. 2.
    V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Absorption Spectral Lines of Atmospheric Gas Molecules, Ed. by A.M. Firsov (Publishing House of IAO SB RAS, Tomsk, 2006) [in Russian].Google Scholar
  3. 3.
    A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and D. V. Malathy, “Measurement and computations for temperature dependences of selfbroadened carbon dioxide transitions in the 30012–00001 and 30013–00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111 (9), 1065–1079 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    K. I. Arshinov, O. N. Krapivnaya, and V. V. Nevdakh, “Laser diagnostics of equilibrium a CO2: N2 gas mixture,” Atmos. Ocean. Opt. 27 (5), 381–385 (2014).CrossRefGoogle Scholar
  5. 5.
    K. I. Arshinov, M. K. Arshinov, and V. V. Nevdakh, “Study of the parameters of the collisionally broadened R22 absorption line of the 1000–0001 transition in CO2 molecules: I. Experiment,” Opt. Spectrosc. 112 (6), 844–849 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. H. Ross and R. G. O' Donnell, “Determination of laser line frequencies and vibrational-rotational constants of the 12C18O2, 13C16O2 and 13C18O2 isotopes from measurements of CW beat frequencies with fast HgCdTe photodiodes and microwave frequencies counters,” J. Mol. Spectrosc. 49 (3), 439–453 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    K. I. Arshinov, V. V. Klubovich, O. N. Krapivnaya, and V. V. Nevdakh, “Determination of the spontaneous emission probabilities and the collision self-broadening coefficients of the CO2 spectral lines,” Pribory Metody Izmerenii, No. 2, 63–67 (2013).Google Scholar
  8. 8.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Tashkun and V. I. Perevalov, “CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1403–1410 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    J. Lamouroux, R. R. Gamache, A. L. Laraia, J.-M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2. III: Self collisions,” J. Quant. Spectrosc. Radiat. Transfer 113 (12), 1536–1546 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    X. Huang, R. R. Gamache, R. S. Freedman, D. W. Schwenke, and T. J. Lee, “Reliable infrared line lists for 13CO2 isotopologues up to E' = 18.000 cm–1 and 1500 K, with line shape parameters,” J. Quant. Spectrosc. Radiat. Transfer 147, 134–144 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    Sh. Chen and M. Takeo, “Broadening and shift of spectral lines produced by foreign gases,” Uspekhi Fiz. Nauk 66 (3), 391–474 (1958).CrossRefGoogle Scholar
  13. 13.
    V. V. Nevdakh, L. N. Orlov, and N. S. Leshenyuk, “Temperature dependence of the vibrational relaxation rate constants of CO2 (0001) in binary mixtures,” J. Appl. Spectrosc. 70 (2), 276–284 (2003).CrossRefGoogle Scholar
  14. 14.
    P. V. Novitskii and I. A. Zograf, Assessment of Measurement Result Errors (Energoatomizdat, Leningrad, 1985) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. I. Arshinov
    • 1
    Email author
  • O. N. Krapivnaya
    • 1
  • V. V. Nevdakh
    • 2
  1. 1.Institute of Technical AcousticsNational Academy of Sciences of BelarusVitebskBelarus
  2. 2.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations