Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 4, pp 337–341 | Cite as

Remote detector of hazardous substances based on a tunable 13С16О2 laser

  • B. G. AgeevEmail author
  • A. V. Klimkin
  • A. N. Kuryak
  • K. O. Osipov
  • Yu. N. Ponomarev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

A description of the developed prototype of a remote detector of hazardous substance vapors based on a tunable 13С16О2 laser is given. Results of test measurements of laser radiation transmission of organic liquid vapors (acetone, ammonia, ethanol, gasoline) are presented. The remote detection of acetone and ammonia vapors at distances up to 100 m is experimentally implemented.

Keywords

remote detection 13С16О2 laser hazardous substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Munson, J. L. Gottfried, F. C. De Lucia, K. L. McNesby, and A. W. Miziolek, Laser-Based Detection Methods for Explosives, Rep. N ADA474060 (US Army Research Laboratory, 2007).CrossRefGoogle Scholar
  2. 2.
    J. I. Steinfeld and J. Wormhoudt, “Explosives detection: A challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A&B (Wiley-Interscience, New York, 2008).CrossRefGoogle Scholar
  4. 4.
    Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, V. L. Zbarskii, N. V. Yudin, E. N. Golubeva, V. L. Vaks, E. G. Domracheva, E. A. Sobakinskaya, and M. B. Chernyaeva, “Spectrochemical features of certain brisant explosives in the vapor state,” Atmos. Ocean. Opt. 26 (5), 377–390 (2013).CrossRefGoogle Scholar
  5. 5.
    V. S. Starovoitov, S. A. Trushin, and V. V. Churakov, “13C16O2-laser based photoacoustic gas analyzer of multicomponent air pollution,” Zh. Prikl. Spektrosk. 66 (3), 345–350 (1999).Google Scholar
  6. 6.
    V. S. Starovoitov, S. A. Trushin, and V. V. Churakov, “Use of lasers on CO2 isotopologues for photoacoustic monitoring of air pollution,” Zh. Prikl. Spektrosk. 59 (5-6), 504–509 (1993).Google Scholar
  7. 7.
    A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger, “Differential absorption lidar CO2 laser system for remote sensing of TATP related gases,” Appl. Opt. 48 (4), B145–B150 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    G. V. Sakovich, A. I. Chernov, S. V. Silant’ev, A. B. Vorozhtsov, A. A. Pavlenko, E. V. Maksimenko, M. M. Makogon, A. V. Klimkin, K. Yu. Osipov, Yu. N. Ponomarev, V. A. Kapitanov, and B. G. Ageev, “Prototype of a remote detector of explosives on the basis of an isotope SO2 laser,” Polzunovskii Vestnik, No. 4, 38–46 (2010).Google Scholar
  9. 9.
    www.detectors.lc-solutions.com.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • B. G. Ageev
    • 1
    Email author
  • A. V. Klimkin
    • 1
  • A. N. Kuryak
    • 1
  • K. O. Osipov
    • 1
  • Yu. N. Ponomarev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations