Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 3, pp 234–235 | Cite as

The study of cirrus clouds with the polarization lidar in the South-East China (Hefei)

  • Zhenzhu Wang
  • V. A. Shishko
  • A. V. KonoshonkinEmail author
  • N. V. Kustova
  • A. G. Borovoi
  • G. G. Matvienko
  • Chenbo Xie
  • Dong Liu
  • Yingjian Wang
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

Results of the study of microphysical characteristics of cirrus clouds in Hefei, China, with a multiwavelength polarization lidar are presented. Measurements were carried out from December 2010, to February 2013. In this work, we consider the only dependable parameter of lidar signals, i.e., the linear depolarization ratio measured at a wavelength of 532 μm. The dependences of depolarization ratios on both the size of ice crystals and the distribution of their distortion angles were calculated in this work for the first time. These results were used for retrieving, with some uncertainty, the microphysical parameters of cirrus clouds observed in Hefei during that period.

Keywords

polarization lidar cirrus clouds physical optics approximation light scattering ice crystals 

References

  1. 1.
    K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    Z. Wang, A. Borovoi, D. Liu, Z. Tao, C. Ji, C. Xie, B.Wang, Z. Zhong, and Y. Wang, “Properties of cirrus cloud by a three wavelength Raman Mie polarization lidar: Observation and model match,” Proc. SPIE 10035 (2016).Google Scholar
  3. 3.
    J. Ding, P. Yang, R. E. Holz, S. Platnick, K. G. Meyer, M. A. Vaughan, Y. Hu, and M. D. King, “Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data,” Opt. Express. 24 (1), 620–636 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds,” Opt. Lett. 39 (19), 5788–5791 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Express. 23 (19), 24557–24571 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51, 817–832 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Zhenzhu Wang
    • 1
  • V. A. Shishko
    • 2
    • 3
  • A. V. Konoshonkin
    • 2
    • 3
    Email author
  • N. V. Kustova
    • 2
  • A. G. Borovoi
    • 2
    • 3
  • G. G. Matvienko
    • 2
  • Chenbo Xie
    • 1
  • Dong Liu
    • 1
  • Yingjian Wang
    • 1
    • 4
  1. 1.Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.University of Science and Technology of ChinaHefeiChina

Personalised recommendations