Atmospheric and Oceanic Optics

, Volume 30, Issue 3, pp 226–233 | Cite as

Characteristics of stratospheric aerosol from data of lidar measurements over Obninsk in 2012–2015

  • V. A. KorshunovEmail author
  • D. S. Zubachev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


Lidar polarization measurements of stratospheric aerosol were performed over Obninsk in 2012–2015. In all, over 300 altitude profiles of the aerosol backscattering coefficient at a wavelength of 532 nm in the altitude interval from 10 to 40 km were obtained. Overall, the measured aerosol backscattering characteristics are close to the known background values. During spring 2013, an elevated content of spherical-type aerosol was noted in the tropopause region, seemingly associated with sedimentation of aerosol structures formed during the fall of the Chelyabinsk meteorite. In July 2014 and 2015, layers of increased aerosol scattering were observed in the altitude interval from 10 to 15 km, associated with transcontinental transport of aerosol from Canadian forest fires. Integrated backscattering and extinction characteristics are estimated for the lower (from tropopause level to 15 km) and middle (from 15 to 30 km) stratospheric layers. It is found that the contribution of the lower layer to these optical characteristics is 1.8 and 1.6 times larger than the contribution of the middle layer.


stratosphere lidar aerosol backscattering optical depth Chelyabinsk meteorite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bazhenov, V. Burlakov, S. Dolgii, A. Nevzorov, and N. Salnikova, “Optical monitoring of characteristics of the stratospheric aerosol layer and total ozone content at the Siberian Lidar Station (Tomsk: 56°30' N; 85° E),” Int. J. Remote Sens. 36 (11), 3024–3032 (2015). doi 10.1080/01431161.2015.1054964CrossRefGoogle Scholar
  2. 2.
    T. Trickl, H. Giehl, H. Jager, and H. Vogelmann, “35 yr of stratospheric aerosol measurements at Garmisch- Partenkirchen: From Fuego to Eyjafjallajokull, and beyond,” Atmos. Chem. Phys. 13 (10), 5205–5225 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    S. S. Khmelevtsov, Yu. G. Kaufman, V. A. Korshunov, E. D. Svetogorov, and A. S. Khmelevtsov, “Laser sounding of atmospheric parameters at Obninsk Lidar Station SIU TYPHOON,” in Problems of Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 1998), p. 358–392 [in Russian].Google Scholar
  4. 4.
    V. A. Korshunov, D.S. Zubachev, E.G. Merzlyakov, and Ch. Jacobi, “Aerosol parameters of middle atmosphere by two-wavelength lidar sensing and their comparison with radio meteor echo measurements,” Atmos. Ocean. Opt. 28 (1), 82–88 (2015).CrossRefGoogle Scholar
  5. 5.
    V. A. Korshunov and D. S. Zubachev, “Determination of stratospheric aerosol parameters from two-wavelength lidar sensing data,” Izv., Atmos. Ocean. Phys. 49 (2), 176–186 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Voigt, J. Orphal, K. Bogumil, and J. P. Burrows, “The temperature dependence (203–293) K of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol., A, Chem. 143 (1), 1–9 (2001).CrossRefGoogle Scholar
  7. 7.
    L. T. Molina and M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res., D 91 (13), 14501–14508 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61 (4), 509–517 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    Databases O3Spectra. Scholar
  10. 10.
    V. V. Zuev, Lidar Control of the Stratosphere (Nauka, Novosibirsk, 2004) [in Russian].Google Scholar
  11. 11.
    V. N. Ivanov, D. S. Zubachev, V. A. Korshunov, V. B. Lapshin, M. S. Ivanov, K. A. Galkin, P. A. Gubko, D. L. Antonov, G. F. Tulinov, A. A. Cheremisin, P. V. Novikov, S. V. Nikolashkin, S. V. Titov, and V. N. Marichev, “Lidar observations of stratospheric aerosol traces of Chelyabinsk meteorite,” Opt. Atmos. Okeana 27 (2), 117–122 (2014).Google Scholar
  12. 12.
    T. Birner, A. Dornbrack, and U. Schumann, “How sharp is the tropopause at midlatitudes?,” Geophys. Rev. Lett. 29 (14), 1700 (2002). doi 10.1029/2002GL015142ADSCrossRefGoogle Scholar
  13. 13.
    T. Birne, D. Sankey, and T. G. Shepherd, “The tropopause inversion layer in models and analyses,” Geophys. Rev. Lett. 33, L14804 (2006). doi 10.1029/2006GL026549ADSCrossRefGoogle Scholar
  14. 14.
    T. Deshler, R. Anderson-Sprecher, H. Jager, J. Barnes, D. J. Hofmann, B. Clemesha, D. Simonich, M. Osborn, R. G. Grainger, and S. Godin-Beekmann, “Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004,” J. Geophys. Res. 111, D01201 (2006). doi 10.1029/2005JD006089ADSCrossRefGoogle Scholar
  15. 15.
    O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5°N; 85.0°E) in volcanic activity period 2006–2011,” Int. J. Opt. 2012, Art. ID 786295 (2012). doi 10.1155/2012/786295CrossRefGoogle Scholar
  16. 16.
    NASA. Global Sulfur Dioxide Monitoring. Scholar
  17. 17.
    Smithsonian Institution. Global volcanism program. Scholar
  18. 18.
    M. From, O. Torres, D. Diner, D. Lindsey, B. Vant Hull, R. Servranckx, E. P. Shettle, and Z. Li, “Stratospheric impact of the chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective,” J. Geophys. Res. 113, D08202 (2008).ADSGoogle Scholar
  19. 19.
    M. Fromm, E. Shettle, K. H. Fricke, C. Ritter, T. Trickl, H. Giehl, M. Gerding, J. E. Barnes, M. O’Neill, S. T. Massie, U. Blum, I. S. McDermid, T. Leblanc, and T. Deshler, “Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 2. Vertical profile perspective,” J. Geophys. Res. 113, D08203 (2008). doi 10.1029/2007JD009153ADSGoogle Scholar
  20. 20.
    D. A. Ridley, S. Solomon, J. E. Barnes, V. D. Burlakov, T. Deshler, S. I. Dolgii, A. B. Herber, T. Nagai, R. R.Neely, III, A. V. Nevzorov, C. Ritter, T. Sakai, B. D. Santer, M. Sato, A. Schmidt, O. Uchino, and J. P. Vernier, “Total volcanic stratospheric aerosol optical depths and implications for global climate change,” Geophys. Rev. Lett. 41 (22), 7763–7769 (2014). doi 10.1002/2014GL061541ADSCrossRefGoogle Scholar
  21. 21.
    L. Goldfarb, P. Keckhut, M.-L. Chanin, and A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44° N, 6° E),” Geophys. Rev. Lett. 28 (9), 1687–1690 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    F. Immler and O. Schrems, “LIDAR Measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study,” Geophys. Rev. Lett. 29 (16), 1809 (2002). doi 10.1029/2002GL015077ADSCrossRefGoogle Scholar
  23. 23.
    K. Sassen and J. R. Campbell, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part I: Macrophysical and synoptic properties,” Atm. Sci. 58 (5), 481–496 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  25. 25.
    H. Jager and T. Deshler, “Correction to “Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements”,” Geophys. Res. Lett. 30 (7), 1382 (2003). doi 10.1029/2003GL017189ADSCrossRefGoogle Scholar
  26. 26.
    Air Resources Laboratory. Transport & Dispersion Modeling, HYSPLIT. Scholar
  27. 27.
    CIMSS. PyroCb. 370.Google Scholar
  28. 28.
    CIMSS. PyroCb. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Typhoon Scientific and Production AssociationObninskRussia

Personalised recommendations